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The Small-Signal Frequency
Response of Ferrites

By Nic Hamilton
Defence Equipment & Support, Ministry of Defence (UK)

This article is an
analysis of the
mechanisms and

behavior of magnetically
soft ferrites that are com-
monly used for inductors,
transformers and EMC
filters. The starting point

is taken as the movement of domain walls
through the ferrite, as described by Globus [1].
This leads to some of the mathematical rela-
tionships from which practical conclusions
emerge. The result is a story that deviates
from the standard explanations given in the
textbooks.

Movement of Domain Walls
Materials with a high relative initial mag-

netic permeability, µi, owe their magnetic
properties to the ability of the material to
organize itself into magnetic domains. In
every Weiss domain, the material is magneti-
cally saturated in a single direction, in ferrites
to about 0.5 Tesla. These domains are separat-
ed by thin areas in which the magnetization
flips from one direction to another. These
areas are known as Bloch or domain walls. In
an “unmagnetized” ferrite, the net sum of the
magnetization of all the domains is zero. But
the application of a very small external field
can cause the movement of the Bloch walls in
such a way that one set of domains grows at
the expense of another. In this way, ferrites
can have permeabilities of 100,000.

Take the simple hypothetical case shown
in Figure 1. While there is no current through
the conductor, the volumes of the two domains
are equal, and there is no net magnetization
in the core. If a current suddenly flows in the

conductor, a magnetic field surrounds the con-
ductor. This field favors one of the two
domains. So the domain wall moves upwards
to increase the volume of the favored domain
at the expense of the other, thereby causing an
overall magnetization in the ferrite bead. If
the current in the conductor falls to zero, the
wall position will relax back to its former equi-
librium position, so this is called a relaxation
process.

So what is the real domain structure in a
ferrite, and how does this structure react to a
magnetic field? Unfortunately, this is very
hard to deduce and even harder to observe.
There have been studies of the wall mobility
in thin metal wires [2] (1 dimensional) and on
the surface of single large ferrite crystals [3]
and thin ferrite films [4] (2 dimensional).
There have also been many studies of the stat-
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Figure 1  ·  Current carried by a wire thread-
ed through a ferrite bead causes domain
wall displacement. In this example, the
hypothetical bead contains just two oppos-
ing domains. The core material is character-
ized by its initial magnetic susceptibility χχi,
where χχi = M/H.
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ic magnetization showing at the surfaces of bulk materi-
als. The conclusions are that domain wall mobility is not
a simple matter and that some highly complex magnetic
structures can be generated even in a perfectly uniform
crystal of material. And most ferrites consist of small
crystals (grains) jammed tightly together, separated by
very thin grain boundaries. So the ferrite in an RF core is
a material that consists of a foam of grain boundaries
that separate crystallites with random crystal orienta-
tions. The magnetic domain walls can also be considered
as having a foam structure. Electron microscopy [4] of
some MnZn ferrites has lead to the conclusion that, in the
absence of an external magnetic field, the structural and
magnetic foams are roughly the same: the magnetic walls
follow the grain boundaries. Measurements also confirm
logic, which tells us that a magnetically saturated core
can have no domain walls. The magnetization is said to
“drive out” the domain walls. In the hypothetical case of
Figure 1, when the domain wall reaches the upper surface
of the ferrite, it ceases to exist. Current techniques do not
allow observation of the movement of domain walls in a
bulk material, and, under the small-signal conditions dis-
cussed here, the wall movement would be hard to detect
because it approximates to zero. So research on this topic
has become a topic for those interested in computer sim-
ulations.

In the face of all this complexity, it might be assumed
that a mathematical analysis of the frequency response of
ferrite would be a hopeless enterprise. It is not; it turns
out that the model of Figure 1 works well for small sig-
nals. Domain walls cannot be moved instantaneously;
they propagate through the ferrite at a finite speed, which
may be visualized in the model in Figure 1. This single
relaxation mechanism is modelled as an exponential; the
exponential change in magnetization with time is illus-
trated in Figure 2.

Measurements show that Figure 2 is very similar to
the actual response of ferrite. This is fortunate, because
Peter Debye, in his book Polar Molecules, analyzed the

mathematics of a single exponential relaxation process
known as a Debye Relaxation. It is the speed of the
motion of the domain walls and their associated time con-
stant and hence phase delay that causes the frequency
response of ferrites.

Complex Permeability
The chief “data book” characteristic of ferrite material

is the relative initial permeability µi. This is measured
with “a very small signal” and “nearly at dc.” In the
absence of a magnetic core, µi = 1, but typical values for
ferrite lie between 50 and 100,000. To characterize the
material across the frequency spectrum, the idea of com-
plex permeability is introduced as the following:

in which all three terms are functions of frequency and
where µ' represents the real “reactive” part and µ" the
imaginary “resistive” part, and j is √–1. The * indicates
that the variable is complex. µi is often considered as the
limiting value at very low frequency, the quasi-static
value, but can be calculated at other frequencies.

Complex Susceptibility Related to Permeability
Permeability is an excellent measure for engineering

purposes, but, from the point of view of physics, it is much
more convenient to use the magnetic susceptibility when
considering the material. The initial magnetic suscepti-
bility, often known simply as initial susceptibility χi is
related to permeability by: χi = µi – 1 . Susceptibility may
also be expressed in complex terms:

So that:

The physics of the matter is that:

Where H is the driving magnetic field strength, B is
the magnetic flux density, and M is the magnetization.

In practical terms, the relative permeability of free
space is 1, but its susceptibility is 0. A coil of wire will
have an inductance at low frequencies, even in the
absence of a magnetic core. By switching from permeabil-
ity to susceptibility, we effectively remove that induc-
tance, and ask “what is the additional inductance due to
the presence of the core?” But as the manufacturing tol-
erance of the permeability of ferrite cores without an air

μ μ χ0 *
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    and     
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Figure 2  ·  The core magnetization M (red curve)
changing with time (expressed in time constants ττ)
showing the response to a step change in coil current.
M exponentially increases towards its final value as
time increases. Initial gradient (dashed blue line) is 1.
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gap is usually ±20%, and permeability is much greater
than 10, the difference between permeability and suscep-
tibility is usually a technical nicety.

Theoretical Susceptibility Spectrum
Consider the core of Figure 1 with a time response of

Figure 2, with its single relaxation with a time constant
of τ seconds and under the excitation of an angular fre-
quency of ω radians per second. Then, using the Laplace
transform, the material’s permeability spectrum in
response to an applied ac magnetic field can be found [5],
and expressed as a susceptibility as:

(1)

Which is the magnetic equivalent of the Debye equation,
which is normally applied to dielectrics. Collecting the
real and imaginary parts gives:

(2)

and resolving Equation 2 into a complex magnetic sus-
ceptibility gives:

(3)

The S subscript of the susceptibility indicates that the
real and imaginary parts are considered as components in
series and relate to a model of an inductor in series with
a resistor. The values of the inductor and resistor are
functions of frequency. The series nature of the circuit is
important but is frequently missed in discussions of this
matter. Equations 3 are shown as normalized graphs in
Figure 3. The log/log graph on the right of Figure 3 is
familiar as the basis of the spectra characterizing the
material given in innumerable data books and papers for
magnetic and dielectric materials. In these and following
graphs, the blue trace is the real part that is responsible

for the inductive component, and the red/orange trace is
the imaginary part that is responsible for the resistive
component.

Note that there is a frequency beyond which the
inductive part of the susceptibility is said to “roll-off” in
an analogy to a low-pass filter, and, nearby, a frequency at
which the lossy part is said to peak, or, by some, to res-
onate. Note also that the two graphs cross where ωτ = 1,
and where µ' = µ" = 0.5.

Data Derived From the Susceptibility Spectrum
Materials scientists are interested in the magnetic

losses that cause the phase shift δm between the driving
magnetic field strength H and the magnetization M. The
engineer is more often interested in its reciprocal, the
material quality factor Qm.

(4)

Also, by inserting an air-gap in the magnetic path, Qm
can be traded off against the initial permeability. So, by
including an air-gap to halve the effective permeability,
the effective Qm is doubled. This gives rise to the
Dissipation Factor, DF, or Residual Loss Factor, the use of
which has been attributed to J. L. Snoek and W. Six.

(5)

So DF has the following uses:

a. As a material figure of merit, so that different fer-
rites may be compared one with the other.

b. In the calculation of the effects of an air gap.

The literature also states that the permeability (and
hence susceptibility) may also be expressed in parallel
terms. And this, with the exception of the Snoek limit,
which we will come to later, represents the general limit
of the analysis contained in the textbooks.
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Figure 3  ·  Normalized real (solid blue) and imaginary
(dashed red) parts of complex series susceptibility
spectrum. Left: log/linear, right log/log.

Figure 4  ·  Normalized real and imaginary parts of
complex parallel susceptibility spectrum. Compare
with series version in Figure 3.
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Parallel Susceptibility Spectrum
The parallel form of susceptibility (with the P sub-

script) can be derived from the series form using the stan-
dard equations for conversion of impedance to admittance:

(6)

And substituting Equations 3 into Equations 6 gives
the following solution:

(7)

This is a result that can be inferred from the literature
[7], but it has been shown in detail here because it does not
seem to be explicitly stated elsewhere. So the parallel sus-
ceptibility is plainly simpler than the series form [8] and
graphs are shown in Figure 4, which may be compared to
the series form in Figure 3. Especially note that the paral-
lel susceptibility spectrum does not show any hint of reso-
nance, but, as with the series form, µ' = µ" = 0.5 where
ωτ = 1.

Equations 7 imply that the parallel susceptibility
spectrum contains the basic information about the mate-
rial performance. The real part χP' does not depend on fre-
quency and tells of the static performance and demagne-
tization effects such as an air-gap. The imaginary part χP"
is a function of frequency, tells of the dynamic perfor-
mance, and is directly related to domain wall mobility.

Material Q and the Dissipation Factor
As the permeability can be expressed in terms of ωτ, it

follows from Equation 3 that this also applies to Q.

(8)

Applying the same logic to Equation 5 for DF, but
approximating χi ≈ µi gives

(9)

So the graphs of DF that have traditionally been used
to compare the relative merits of various ferrites at vari-
ous frequencies [9] are exceedingly closely related to
reciprocals of the complex part of the parallel susceptibil-
ity and hence to the domain wall mobility. It should come
as no surprise that ferrites perform better at high fre-
quencies if they have relatively nimble domain walls.

Domain Wall Size and Mobility
Having stated that Figure 1 is hypothetical in that it

has just two domains, and that Globus [1] named the
whole topic the “domain wall size theory,” it is reasonable
to ask about the actual size, or rather the total domain
wall surface area in a ferrite bead. If Figure 1 is taken as
a 1/2 inch O/D toroid with the usual dimensions, then the
single disc domain wall has an area of 90 mm2. If the tor-
roid’s ferrite consists of grains of 10 µm diameter, and if
the domain walls follow the grain boundaries [4], then the
actual wall area is about 90,000 mm2; about 1,000 times
the area of the single domain wall.

So how quickly do the domain walls move through fer-
rite? Not quickly at all; wall velocity depends on the cur-
rent magnetisation and current % of final magnetization
value, and many other factors, including the resistivity of
the ferrite within the grains, but a sensible choice of unit
of measurement of the wall velocity might be meters per
second.

From this, many investigators have inferred that the
movement of domain walls is too slow a process to be the
cause of ferrites’ performance at, say, 10 MHz. This is not
true. Although Figure 4 shows that χP" ∞ 1/ƒ, the value of
the resulting resistance RP ∞ χP"ƒ, so the effects of fre-
quency cancel, and equivalent parallel resistance due to
movement of the domain walls tends to be constant with
increasing frequency. And this is in spite of the fact that,
in ferrites, the sluggishness of the domain walls often
starts to show its effects on µ" near 10 kHz.

Susceptibility Expressed as Lumped Elements
Susceptibility can be converted to permeability and

then denormalized for the size and shape of the core
(assuming no air-gap) to give an equivalent inductor and
resistor.

In the series circuit, the values of L and R are strong
functions of frequency, so this approach is not very useful.

But the parallel susceptibility converts to an inductor
and resistor in a parallel equivalent circuit.

This should come as no surprise: the circuit models
and the series and parallel comparative graphs in the
text-books already tell us that this is so [10].

Adding Low-Field Hysteresis
Comparing the graphs of measured parallel perme-

ability spectra [10] with Figure 4 shows an immediate
problem: as the frequency falls towards zero, Figure 4 pre-
dicts that the material Q becomes infinite, but measure-
ments show it to be finite. There is a signal loss associat-
ed with propagating waves through any substance, and a
domain wall is a type of wave. The lumped element model
must have a further “component” in parallel with the
Debye components, as shown in Figure 5.

By adding the parallel admittances of the
“resistive”components, the imaginary part of the parallel
permeability must be:
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(10)

Using this formula, and the model of Figure 5, it is
possible to build moderately accurate models of ferrites at
small signals; Figure 6 shows such a model for a typical
ferrite in the parallel susceptibility form, and the same
data converted to the series susceptibility representation.

But be clear about the nature of the additional fre-
quency dependent resistor (FDR). The loss of this “resis-
tor” is proportional to the number of times the driving sig-
nal takes the material round its hysteresis loop in a given
time. It is difficult to model FDRs in SPICE and similar
simulators in such a way that the model will run in both
time and frequency domains. The most convenient
approximation to the frequency dependent resistor is an
LR ladder network; this can model over a finite frequen-
cy range and with a finite accuracy using a finite (but
large) number of LR pairs in the ladder. The FDR also
arises in using circuit simulators to model skin effect [11].
The symbol for the FDR was adopted from [12].

Relaxation or Resonance? Snoek’s View
Dr. J. L. Snoek of Philips in the Netherlands wrote a

slim book [13] “intended as a report on our researches
during the [Second World] war under conditions which
became gradually harder and in an atmosphere ill suited
to scientific thought.” Snoek’s book showed how ferrites
could be manufactured to give permeabilities much
greater than had been previously achieved by Drs. Kato
and Takei of what was to become TDK Corporation.

Snoek’s book made him the leading authority on the

subject in the West. In the 1947 1st edition of the book,
Snoek stated that the increasing loss with increasing fre-
quency in ferrite was due to losses associated with
domain wall relaxation.

However, in a much-cited paper published in May
1948 [14], Snoek had a change of opinion. He asserted
that the increasing loss with increasing frequency in fer-
rite was due to a resonance caused by rotation of the mag-
netisation, an effect predicted by Landau and Lifshitz in
1935. Snoek also asserted that the movement of the
domain walls was “a lower-frequency and less prominent
effect.” But Snoek had not included any detailed high fre-
quency measurements that could illuminate the matter.
These were soon published and showed just one “reso-
nance” in materials with Snoek’s Constant (a measure of
goodness defined later) ƒχP" = 4 GHz.

′′ = +[ ]χ χ ωτ δP m0 tan -1

Figure 5  ·  “Three component” model of ferrite materi-
al’s permeability. The inductor is split to show the series
assumption underlying the definition of permeability.
Debye components are a standard inductor and resis-
tor, but the quasi-static loss is a frequency-dependent
resistor, simulating the hysteresis loss per cycle.

Figure 6  ·  Model of the susceptibility spectrum of a typ-
ical ferrite, with µi = 2000, Qm = 200 and ƒχχP" = 7.5 GHz,
giving a single relaxation frequency ƒr = 3.75 MHz.
a)  Upper graph: parallel susceptibility, converted in
b)  Lower graph: to the series representation.
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Rado et al. did not agree [15]. From their measure-
ments of a magnesium ferrite (χi = 19 ƒχP" = 0.7 GHz, a
poor ferrite), they concluded that the main effect was due
to domain wall movement at low frequency, with reso-
nance in the GHz region due to magnetization rotation.
Rado’s paper was published in October 1950. Snoek had
regrettably little time to respond; he died in an automo-
bile accident in Indiana two months later [16]. I suspect
that this tragedy prevented the scientific community
from arriving at a consensus opinion, so an air of irreso-
lution still persists: is it resonance due to magnetization
rotation or is it relaxation due to domain wall transla-
tion? Current books form a spectrum of opinion; the book-
ends are perhaps Dionne’s Magnetic Oxides and
Valenzuela’s Magnetic Ceramics.

Snoek’s Constant and the Time Constant
The basis for Snoek’s assertion of resonance was that

the mathematics predicted that the following relationship
held for cubic (the usual type) ferrites:

(11)

Where ω0 is the critical frequency, χ is the low fre-
quency susceptibility, g is the gyromagnetic ratio and M is
the material’s magnetic moment per cm3. The critical fre-
quency may be taken to be that at which χs" peaks.
Equation 11 has proved to be a reasonable approximation
[17]. In addition, as the right side of Equation 11 is fairly
constant, it predicts that there is a direct trade-off
between ω0 and χ. Thus, a high permeability material will
only be useable to a low frequency, and a low permeabili-
ty material is needed for good high frequency perfor-
mance. This, too, is approximately true. Equation 11 is

widely known as the Snoek relationship, and the product
ƒrχ, is known as Snoek’s Constant, Product or Limit. It is
often expressed as ƒr(µs – 1), where the subscript s refers
to the static [18] or low-frequency initial permeability,
rather than indicating the series permeability used in
this article. It also appears as the simple value S in some
texts. For a modern NiZn ferrite, its value is about
7.5 GHz [17]. This constant is very useful: it enables the
time constant τ to be evaluated, allowing easy use of
Equations 7 and 10 to produce a reasonably accurate rep-
resentation of a ferrite’s permeability spectrum.

Note that Snoek’s Constant expressed as ƒrχ refers to
a single point (ƒr, χS') on the series permeability spectrum
for a given ferrite; this is illustrated in Figure 6b. But,
looking at Figure 6a, it is clear that all points on the ƒχP"
curve at frequencies at which the quasi-static loss compo-
nent is small (greater than 0.1 MHz in this example) sat-
isfy Snoek’s Constant, which is inherent in the mathe-
matics of a single relaxation. So Snoek’s Constant is a
broad-band value in the parallel permeability representa-
tion and happens also to apply to the series representa-
tion because it refers to ƒr, the relaxation frequency. At
this frequency, the ferrite’s Q passes through 1 and is,
therefore, the unique frequency at which Snoek’s
Constant also applies in the series permeability repre-
sentation. So I propose that Snoek’s Constant be ƒχP"
when applied to relaxation. And it has already been
shown that RP ∞ χP"ƒ.

Measuring the Permeability Spectra
The permeability spectra are derived from impedance

measurements. At LF, the impedance per turn is low, and
a multi-turn coil must be used so that the impedance

ω χ0

3
2

= g M

Figure 7  ·  Characterization of a 1/2-inch diameter
core. Left: 10 turn winding presents sufficient
impedance for a reliable measurement at LF. The tri-
filar winding minimizes winding loss. Right: The same
core fitted in a coaxial short using a GR900 50 ohm
connector, which provides a single turn for VHF mea-
surement and will accept cores with an outside diam-
eter of less than 14 mm.

Figure 8  ·  Measured susceptibility spectrum of a “high
Q” NiZn ferrite (Fair-Rite 61). Also shown, a relaxation
model with µi = 100, Qm = 150 and ƒχχP" = 7.5 GHz
(graph expanded to show this). 
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becomes large enough compared to 50 ohms for a success-
ful measurement of the very small phase angle. But at
UHF, multiple turns become a significant portion of a
wavelength, and this contaminates the measurement. So
it is normal to use a vector network analyzer to measure
the core in a coaxial line [19]. Test windings of these two
sorts are illustrated in Figure 7.

For coaxial measurements, it is standard practice to do
an Open/Short/Load (OSL) calibration to remove the
effects of the connectors, but using an OSL calibration
normalizes out the inductance of the coaxial “single turn.”
So multi-turn coil impedance measurements converted to
the core properties give the material’s permeability,
whereas the same process starting with an OSL nor-
malised coaxial measurement gives the material’s mag-
netic susceptibility.

Measured Permeability Spectra
The “three component” relaxation model of Figure 5

gives a good fit for many materials such as metals and
“low Q” ferrites intended for RFI filters and transformers.
However, some “high Q” ferrites are not immediately
amenable to this modeling: an example is shown in
Figure 8, which shows both measured and relaxation
modelled results. A comparison of these shows the prime
aim of the manufacturer in the development of this fer-
rite: to defer the onset of the fall in the material’s Q to a
higher frequency than can be achieved using a pure relax-
ation process. This extends the “high Q” ferrite’s frequen-
cy range by about a decade. This may be achieved in fer-
rites consisting of a mixture of small and large grains,
whereas a uniform grain size gives a relaxation charac-
teristic [20].

Figure 8 shows other features. The measured χP' is not
quite constant. This is because χP' and χP" (ignoring the
hysteresis loss) are governed by the Kramers-Kronig rela-
tions. So the deviation in χP" away from the model with its
1/ƒ relationship automatically means that χP' cannot be
constant. But this also implies that a very careful mea-
surement of the χP' could, in theory, be mathematically
transformed to show the frequency spectrum of χP" if
there was no hysteresis loss. In this way, the shape of the
“mountain-tops” of the low-frequency χP" spectrum may
be revealed above the hysteresis loss “cloud line.”

Permeability Converted to Impedance
From the permeability spectrum, the resistance and

reactance spectrum can be found.

(12)

where C1 is the core constant, and N is the number of
turns. Again, it is best to work in parallel terms, and the

data of Figure 8 convert to the parallel resistance and
reactance spectra of Figure 9. Apart from some normal-
ization for the core constant, the main effect is to multi-
ply the curves of Figure 8 by the frequency, so XP is pro-
portional to ƒχP' and RP is proportional to ƒχP", which was
given earlier as a definition of Snoek’s Constant, giving
the useful approximation stated in Figure 9 for a NiZn
ferrite. For a MnZn ferrite, replace the constant 60 by 40.
This is an approximation that I found by experiment [21],
but it is only now that I understand its derivation from
Snoek’s constant.

Definition of “Low Signal”
This article is called “The Small-Signal Frequency

Response of Ferrites,” a title that carries with it a threat
that none of this applies as power levels increase. So, to
what amplitude does all this remain good?

Of the circuit elements in Figure 5, the quasi-static
loss (hysteresis loss) component is the most prone to
change as the signal level increases. As signal amplitude
increases, the effect on the permeability spectrum is the
progressive reduction of the material Qm. With 12 turns
on a 1/2-inch core, the measured value of χP" starts to
decrease as the available power exceeds –15 dBm, giving
an rms flux density of 0.3 mT as the point at which Q
starts to fall. The effect is to progressively reduce the
peak value of Rp.

However, the values of the “Debye components” are
much more stable with increasing magnetization. The
inductance increases to a peak at about 200 mT, and then
diminishes at the onset of magnetic saturation. Clearly, at
these amplitudes, the core starts to generate significant
harmonic energy, and using a VNA to measure the
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Figure 9  ·  The permeability data of Figure 8 converted
to parallel resistance and reactance spectra normal-
ized to 1 turn on a core with a core factor C1 = 1 mm-1. 
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S parameters becomes a poorer approximation to reality.
Another threat to the “low signal” performance is the

application of a strong static magnetic field. This can
cause the magneto-strictive properties of the ferrite to
become apparent. Magneto-striction is the magnetic
equivalent of piezoelectricity in a dielectric; apply a mag-
netic field, ferrite crystallites change shape by a small
amount. Just as a quartz crystal can be used as an ultra-
sonic acoustic resonator, applying a strong static magnet-
ic field to a NiZn ferrite can cause extremely high Q ultra-
sonic acoustic resonances of the core.

Air Gaps and Parallel Permeability Spectra
As stated above, an air-gap reduces the effective initial

permeability, but that price buys increased Qm, enhanced
temperature stability and a tighter tolerance of the effec-
tive initial permeability. It also buys an extended fre-
quency range for a given Qm, and it would be reasonable
to expect to see this frequency extension on the graphs of
permeability spectra. The series permeability is not suit-
ed to calculation of the effects of an air-gap, DF has been
used instead. But as DF ≈ 1/χP", it is no surprise that the
effect of an air-gap on the parallel permeability spectra is
simply to reduce χP', and the relaxation frequency (at
which χP' = χP" ), increases by the correct amount.

Why is the Series Permeability Used?
If the advantages of using the parallel form of perme-

ability are so overwhelming, why does all the literature
use the series form? I think there are two main reasons.

First, We are educated to think in terms of impedance
rather than admittance.

Second, the mathematics of the definition of perme-
ability, µi = χi +1 defines a series circuit of two inductors,
as shown in Figure 5, one being the air core inductance,
and the other being the additional inductance due to the
magnetic core. Once started on a series circuit, it is easi-
er to continue and pay the price of making the value of
this resistance a strong function of frequency.

A fringe benefit of the series approach is that the
material loss resistance can then be lumped together with
the series resistance due to dc resistance and skin effect
in the practical inductor.

Reciprocal Terms: Completing the Terminology
Just as the reciprocal of impedance is admittance, so

the reciprocal of permeability is reluctivity. Snoek found
it convenient to use reluctivity in his study [22] of slow
magnetic relaxations in 1938, but it is little used in the
discussion of ferrite’s magnetism today.

Fundamental relationships in magnetism are the
Curie and Curie-Weiss Laws for paramagnetic materials,
where the inverse susceptibility is related to tempera-
ture. Perhaps the reciprocal of magnetic susceptibility

could be the magnetic immunity, the use of which would
simplify the mathematics and remove the need to differ-
entiate between series and parallel susceptibility. Figure
10 summarizes the various relationships.

For example, Equations 6 convert series susceptibility
into parallel susceptibility. Figure 10 shows the separate
steps underlying Equations 6; take χS' and χS" and
assemble χ*, then take the complex reciprocal to give the
immunity ι*, separate the real and imaginary parts of
immunity and take their individual reciprocals to give the
answer χP' and χP". This final step would be unnecessary
if we were prepared to use immunity as a property in its
own right. Using this logic, the Dissipation Factor DF is
just the imaginary part of the immunity.

So, just as denormalization of complex permeability
leads to impedance, denormalization of complex reluctiv-
ity would lead to admittance.

Conclusions
Even though this article is about ferrites, the mathe-

matics, with a little adjustment for leading or lagging pha-
sors, apply to all reactive components with high relative
permeability or permittivity. The main conclusions are:

• Ferrite cored inductors must be modeled as a paral-
lel circuit. This follows directly from two initial
assumptions:

(1) The core magnetization changes exponential-
ly in response to a step change in coil current

(2) The inductance of the coil’s winding in the
absence of the core provides a negligible con-
tribution to the total inductance in the pres-
ence of the core.

Figure 10  ·  The series and parallel families of magnet-
ic and electronic variables. Each pair of terms can be
converted to the adjacent pairs of terms. A dashed line
separates terms with a reciprocal relationship; a solid
line represents other relationships. G is the conduc-
tance and B the susceptance in Siemens. A top row
could be added: Series models (in parallel terms), but
is of little practical use here.
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• The complex permeability spectrum is used to char-
acterize materials and may be expressed in series or
parallel terms. A series expression is usual but is
misleading: the parallel expression gives a clearer
indication of what is happening in the material. This
is a truth more widely appreciated in the field of
dielectrics [12] than in magnetics.

• The frequency at which the material Q = 1 is the
relaxation frequency. There is no resonance at this
frequency, rather, the maximum in the imaginary
part of the series permeability (and its associated
Cole-Cole plot) is a mathematical artifact caused by
analyzing a parallel circuit in series terms.

• At the relaxation frequency and higher, the parallel
resistance dominates and can be found from Snoek’s
constant, which, although not usually quoted in the
data books, is a vital characteristic that indicates
the material’s domain wall mobility.

• For cubic (standard) ferrites, the value of Snoek’s
constant is about 7 GHz for a high quality NiZn, and
about 4 GHz for a MnZn ferrite. This gives most fer-
rites for EMC filters or transformers similar HF per-
formance, if capacitance and line-length effects are
ignored.
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