RF Low Noise Amplifier Technology Landscape Grows More Diverse

Editorial: Terahertz Update

Featured Products

Page 2:
Pulse Profiling Power Sensor; Receiver: Wide Frequency Range

Ideas for Today’s Engineers: Analog · Digital · RF · Microwave · MM-Wave · Lightwave
C.W. SWIFT & Associates, Inc.

C.W. SWIFT & Associates distributes our extensive inventory of SGMC Microwave’s quality products ... OFF THE SHELF!

Including These Connector Series

<table>
<thead>
<tr>
<th>Connector Series</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85mm</td>
<td>DC-65 GHz</td>
</tr>
<tr>
<td>2.92mm</td>
<td>DC-40 GHz</td>
</tr>
<tr>
<td>7mm</td>
<td>DC-18 GHZ</td>
</tr>
<tr>
<td>2.4mm</td>
<td>DC-50 GHz</td>
</tr>
<tr>
<td>3.5mm</td>
<td>DC-34 GHz</td>
</tr>
<tr>
<td>SSMA</td>
<td>DC-40 GHz</td>
</tr>
</tbody>
</table>

ISO 9001:2008

C.W. SWIFT & Associates, Inc.
15216 Burbank Blvd., Van Nuys, CA 91411
Tel: 800-642-7692 or 818-989-1133 or Fax: 818-989-4784
sales@cwswift.com •www.cwswift.com

CLOSED EVERY ST. PATRICK’S DAY!
SMP - SMPM - SMPS
High Performance Connectors to 65 GHz

Distributed by A.E. Petsche Co.
A Delta Channel Partner
contactAEP@aepetsche.com
www.aepetsche.com
(644) AEP-7600
(844) 237-7600
Pulse Profiling RF Power Sensor

LadyBug Technologies’ newly updated LB480A includes both internal and external triggering as a standard feature. The sensor’s flexible triggering features give users the ability to make time gated measurements on pulsed signals. The advanced triggering features have many other uses, as well.

External TTL triggering can be used to synchronize measurements of signals that are near the noise floor, making it possible to visualize them using the pulse profiling display. Internal trigger level and trigger polarity are user settable as required. LadyBug offers a complete line of USB power sensors with frequency coverage from 9 kHz to 40 GHz. LadyBug sensors are first-tier NIST traceable and offer patented No-Zero No-Cal technology.

LadyBug Technologies LLC
ladybug-tech.com

SIR-4100 ELINT/MASINT Receiver Up to 40 GHz

The SIR-4000 uses the latest DSP technologies to meet the specific needs of the end user. Elcom recognized that in today’s real time threat environment, one size does not fit all.

The goal was to provide the end user a tool that could cover a wider frequency range (up to 40 GHz) and instantaneous bandwidth (up to 2 GHz) critical to RWR applications.

- Input Frequency 0.1 to 40 GHz
- <100 usec in-band switching
- 1.8 GHz IF Output with 1GHz BW
- 160MHz & 70MHz IF with up to 80MHz BW
- Graphical User Interface software

FEI-Elcom Tech
fei-elcomtech.com
Corning Gilbert

Microwave Push-on Interconnects

GPO®

- Center-to-center spacing of 0.170” available for increased package density
- The GPO® blindmate interconnect, Part No. A1A1-0001-01, weighs just 0.17 grams
- Frequency from DC to 40 GHz
- Designed to accommodate both radial and axial misalignment with negligible VSWR change

GPPO®

- Center-to-center spacing of 0.140” available for increased package density
- The GPPO® blindmate interconnect, Part No. B1B1-0001-01, weighs just 0.09 grams
- Frequency from DC to 65 GHz
- Designed to accommodate both radial and axial misalignment with negligible VSWR change

DISTRIBUTED BY:

MICROWAVE COMPONENTS LLC

ISO 9001:2000 CERTIFIED
22: Feature Article

RF Low Noise Amplifier Technology Landscape Grows More Diverse

By Tim Galla

RF low noise amplifiers (LNAs) fabricated with solid state technology have been in use for several decades. The early transition to solid state was pioneered with germanium, has subsequently transitioned to silicon, and has now expanded to include a wide range of compound III-V semiconductors and new carbon-based materials.

The rapid adoption and advancement of LNA technologies is largely due to the growth and diversification of RF applications, and the specific requirements for these new and varying use cases. These requirements include the recent focus of greater linearity demands that complex modulation schemes for 5G applications pose on receivers at millimeter-wave frequencies, large-scale deployments of automotive radar, adoption of beam steering/antenna arrays, and advancements in low-probability-of-detection/low-probability-of-intercept (LPD/LPI) and high survivability radars.

Evolving from the early germanium transistors, modern low noise amplifiers (LNAs) are fabricated using compound semiconductors with heterojunctions and even new carbon materials. The effort and advancement in LNA device technology is driven by a growing need for LNAs with specific performance parameter improvements for the many, and growing, receiver and signal chain applications seen today.
NI AWR Design Environment software provides a seamless platform for developing next-generation wireless electronics and communications systems, from concept to product. Its powerful interface, integrated system, circuit, and electromagnetic simulation technologies, and design flow automation ensures your design success.

Visit awr.com/smarterdesign to learn more.
Terahertz Update

Tom Perkins
Senior Technical Editor

The Terahertz (THz) spectrum between the International Telecommunication Union designated 100 and 30,000 GHz occupies the frequency range between millimeter-waves and infrared lightwaves. More practically, the range might be thought of as between 300 GHz and 10 THz.

An obvious benefit of exploiting these submillimeter-wave frequencies is the wide bandwidth available which supports very high data rates (many gigabits per second) not possible at lower operating frequencies. Also, unlike x-rays and UV rays, the energy of terahertz waves is too low to break chemical bonds such as stripping electrons from atoms, meaning less likelihood of damaging living tissue. This makes the frequencies quite attractive for medical uses and security scanning.

But there are many challenges. Problems to overcome are comparable in some ways to those posed by emerging microwave techniques going back seven or eight decades ago. THz-related issues needing more understanding or mitigation include signal generation (stimulus) and capture (reception), active and passive components, interconnections, free space loss, atmospheric losses, power measurement, attenuation in most solids (with exception of some fabrics, paper, and plastics), instrumentation, test methods, antenna patterns and test equipment. Like the very early days of shortwaves and subsequently, fledgling microwaves, THz frequencies are presently mostly unregulated by the FCC and other spectrum regulatory agencies worldwide. That will likely change as wireless spectrum is an economic engine.

Unique Properties

Many materials that are opaque to visible light are transparent to terahertz radiation including textiles, plastics, paper, and cardboard. Certain materials have a unique “fingerprint” at terahertz frequencies due to molecular emission and absorption that occurs. Terahertz waves are already being used for some surveillance (scan for concealed weapons in airports), inspection, security applications, line-of-sight (LOS) and non-line-of-sight (NLOS) reflective data links. The IEEE Microwave Theory and Techniques Society has been publishing Transactions on Terahertz Science and Technology since year 2011.

Experiments at Brown University

Under a temporary FCC experimental license issued in 2017 for outdoor wireless data links, Brown University, Providence, RI, has performed both indoor and outdoor LOS and NLOS tests to learn more about practical THz capabilities. The participants, led by Professor of Engineering Dr. Daniel Mittleman, used frequencies of 100, 200, 300 and 400 GHz at data rates of 1 Gbit/sec at various humidity levels between 60 and 100% (perhaps easily
experienced in the Rhode Island climate. Humidity has very adverse attenuation effects on THz waves.

Indoor over-the-air reflection tests at Brown included a painted cinderblock wall, the same wall with metal foil added, and a smooth metal plate to distinguish between losses due to surface absorption and scattering. The results were characterized by bit error rate (BER), a realistic and practical figure of merit for communications mediums. Their findings are that the effect of scattering from a rough surface is significantly smaller than absorption effects. The absorption losses increase somewhat with frequency, approximately doubling from 100 to 400 GHz.

It was concluded that specular (highly reflective) NLOS paths are practical for indoor THz links up to 400 GHz due to acceptable path losses. In addition to a 2-meter indoor fixed distance they varied incident/reflection angles and operated over longer distances, e.g. 30 meters with a 26 cm² foil target, and including double reflections from different surfaces on the same link path. Results were quite consistent and surprisingly robust.

In the outdoor tests, the Brown University team set up an experiment that crossed a grassy surface and concrete sidewalk. Temperature, humidity and wind conditions were monitored and recorded. There were many conclusions. Significant ones included that multipath interference, which significantly increases with operating frequency, occurs to a lesser extent over grass than concrete. The reasoning is that the water content in the grass absorbs THz energy. Thus, the surface multipath signals are more attenuated than with the concrete surface. Tech Editor’s Note: The small, moist grass blades at these frequencies could be like radiation absorbent material (RAM) in a natural setting affecting THz waves. I wonder if a low budget THz anechoic chamber could be made with wet AstroTurf?

Dr. Mittleman noted “I think it’s fair to say that most people in the terahertz field would tell you that there would be too much power loss on those bounces, and so non-line-of-sight links are not going to be feasible in terahertz.” Mittleman added, “But our work indicates that the loss is actually quite tolerable in some cases -- quite a bit less than many people would have thought.”

Additional details on the THz research can be found in their paper Channel Performance for Indoor and Outdoor Terahertz Wireless Links in APL Photonics. The work was supported by the National Science Foundation and the W. M. Keck Foundation.
Meetings and Events

2019 IEEE Asia-Pacific Microwave Conference (APMC)
10 - 13 December 2019 | Singapore, Singapore
Field of Interest: Communication, Networking and Broadcast Technologies; Components, Circuits, Devices and Systems; Engineered Materials, Dielectrics and Plasmas; Fields, Waves and Electromagnetics; Photonics and Electrooptics

2019 IEEE MTT-S International Microwave and RF Conference (IMARC)
13 - 15 December 2019 | Mumbai, India
Field of Interest: Communication, Networking and Broadcast Technologies; Components, Circuits, Devices and Systems; Engineered Materials, Dielectrics and Plasmas; Fields, Waves and Electromagnetics; Signal Processing and Analysis

2019 IEEE MTT-S International Microwave and RF Conference (IMARC)
13 - 15 December 2019 | Mumbai, India
Field of Interest: Communication, Networking and Broadcast Technologies; Components, Circuits, Devices and Systems; Engineered Materials, Dielectrics and Plasmas; Fields, Waves and Electromagnetics; Signal Processing and Analysis

2020 94th ARFTG Microwave Measurement Symposium (ARFTG)
26 - 29 January 2020 | San Antonio, Texas, USA
Field of Interest: Components, Circuits, Devices and Systems; Fields, Waves and Electromagnetics

2020 IEEE Radio and Wireless Symposium (RWS)
26 - 29 January 2020 | San Antonio, Texas, USA
Field of Interest: Communication, Networking and Broadcast Technologies; Components, Circuits, Devices and Systems; Fields, Waves and Electromagnetics; Signal Processing and Analysis

RF/Wireless Continuing Education

Within each 3 - 5 year period, one-half of an engineer's technical knowledge becomes obsolete. New graduates soon discover that university education provides only the foundation of knowledge that is realistically needed to perform well in the industry. Continued education is a must for survival in today’s competitive market.

Besser Associates’ instruction combines theory and practice into one complete and “user-friendly” package that attendees may apply on the job immediately. Whether it’s reviewing basics for the inexperienced, or the latest CAD techniques for more seasoned designers, Besser Associates' courses offer meaningful education for every participant.

Besserassociates.com

Was Your Paper Rejected by a Symposium?

HFE Wants to See It
Email Summary to:
tim@highfrequencyelectronics.com

Contact your Sales Rep Today!
Lowest Noise in the Industry

Wide Band, Fast Tune Frequency Synthesizers

Industry Leading Performance!
The LUXYN™ MLVS-Series Frequency Synthesizers from Micro Lambda Wireless is one of the fastest and quietest synthesizers on the market. Standard frequency models are available covering 500 MHz to 20 GHz and 500 MHz to 10 GHz with options to cover down to 50 MHz and up to 21 GHz in a single unit.

With the lowest noise in the industry, (phase noise at 5 GHz is -130 dBc/Hz @ 10 kHz offset and at 10 GHz is -125 dBc/Hz @ 10 kHz offset), and fast tuning speed of 50 µs max (25 µs typ.), these synthesizers are designed for low noise & fast tune applications such as Receiving Systems, Frequency Converters and Test & Measurement Equipment.

For more information contact Micro Lambda Wireless.

www.microlambdawireless.com

Micro Lambda is a ISO 9001:2015 Certified Company
China Will Dominate 5G Deployment Despite Early Lead by the USA and South Korea

According to the latest mobile network forecasts by global tech market advisory firm, ABI Research, 5G is expected to have 12 million connections worldwide by the end of 2019. The number of connections will then skyrocket to 205 million worldwide at the end of 2020, thus starting the golden age of 5G.

The new generation is expected to grow much faster than anticipated and 5G connections are set to overtake 4G connections in 2025. ABI Research expects approximately 3 billion 5G connections in 2025 with 4G declining from its current 3.9 billion to 2.2 billion at the end of the same year.

“Despite the challenges faced by early adopters and the relatively high prices of 5G-capable smartphones in 2019, ABI Research expects 5G to reach the mass market mid-2020, by which time China will start to dominate in terms of connections, and as a result, market interest and technology expertise,” says Dimitris Mavrakis, Research Director at ABI Research. “The infrastructure value chain is maturing, handset vendors are manufacturing mid-tier 5G handsets, and consumers are now discovering higher speeds, better user experiences, and new services, including Cloud Gaming and AR/VR applications. All of these will contribute to the explosion of consumer 5G in 2020.”

ABI Research expects China to dominate 5G deployment after all mobile service providers launched in November 2019 having deployed 5G in 50 cities before launching. Chinese operators are forecasted to have 143 million subscribers at the end of 2020, which will represent an overwhelming 70% of total connections worldwide. In contrast, U.S. operators will reach approximately 28 million in the same year. In 2025, China is expected to have 1.1 billion 5G subscribers and the United States, 318 million. “Globally, ABI Research expects mobile service providers to spend nearly US$1.2 trillion in the next 5 years to build out their networks and will generate nearly US$6.2 trillion in service revenues from the consumer market alone. Although most mobile 5G subscribers will be in China, mobile service provider revenues will still be higher in the United States in 2025, mainly driven by higher subscription prices,” Mavrakis concludes.

—ABI Research
abiresearch.com

Battery Electric Vehicles on the Fast Track to Reach an Installed Base of Over 100 Million by 2029

After decades as a high-cost, low-volume rounding error of global vehicle sales, electric powertrains are now in the ascendancy. Traditional Internal Combustion Engine (ICE) powertrains, diesels, are no longer able to keep pace with the stringent emissions requirements being laid down by governments around the world. These requirements are paving the way for Battery Electric Vehicle (BEV) sales to grow from 1.3% in 2018 to 16.4% in 2029, creating an Electric Vehicle (EV) installed base of over 100 million, forecasts global tech market advisory firm, ABI Research.

“Simultaneously, automakers are seeking to alleviate consumer fears around EV range by rapidly increasing battery capacity, using new battery technologies, such as silicon-dominant anodes and solid-state designs, to increase cell-level energy density from 250 Watt-Hours per Kilogram (Wh/kg) to more than 500 Wh/kg within the next 10 years,” says James Hodgson, Principal Analyst at ABI Research.

The expected growth in EVs and the energy density of their batteries represent a considerable challenge to the energy industry, with energy demand for electric passenger vehicles expected to grow from 1,121 Gigawatt Hours (GWh) in 2018 to 19,141 gWH in 10 years. “While this represents a potential of almost US$20 billion in energy sales by 2028, it also places extraordinary demands on national energy grids, with Transmission System Operators (TSOs) struggling to accommodate the onboarding of BEVs due to the limitations in infrastructure at the last mile, particularly with line constraints, transformer limitations, and the syncing of renewable energy supply with usage,” says Hodgson.

These factors have opened a market opportunity for smart energy management companies to support TSOs in the onboarding of EVs, incentivizing consumers via rewards and revenue sharing to encourage charging during off-peak hours. Potential benefits include helping TSOs to strategically improve last-mile infrastructure without impeding EV adoption and helping energy retailers to better predict energy demand to avoid demand charges.

Beyond the core smart charging opportunity, numerous use cases can be exploited via bidirectional energy flow between the EV and the grid, commonly referred to as Vehicle-to-Grid (V2G). As well as receiving energy from the grid, vehicles can act as generators, providing energy back to the grid in order to fulfill several use cases.

—ABI Research
abiresearch.com

Market Reports
Coilcraft 0402DC Series wirewound chip inductors offer the industry’s highest Q factors in an 0402 (1005) size for super low loss in high frequency circuits. And with 112 values from 0.8 to 120 nH, including 0.1 nH increments from 2.8 nH to 10 nH, you’ll have exactly what you need for all your RF and Microwave applications.

The 0402DC also features wirewound construction for extremely high self resonance – up to 28.8 GHz – and offers DCR as low as 25 mΩ, significantly lower than other inductors this size.

Equip your lab with the ultimate impedance matching resource. Our C472-2 Designer’s Kit has 20 samples of all 112 values! Purchase one online at www.coilcraft.com/0402DC.
Powering Future Optical Microsystems with Chip-Scale Integrated Photonics

Lasers are essential to many fields – ranging from optical communications and remote sensing, to manufacturing and medicine. While the semiconductor laser was first demonstrated nearly 60 years ago, advances in diode lasers and access to semiconductor fabrication techniques have enabled continued innovation and miniaturization of the technology. Photonic integrated circuits (PICs), which combine many photonic elements onto a single chip, have also transformed the way lasers and other optical systems are engineered, creating improvements in size, weight, and power (SWaP), system performance, and enabling new functionality. Despite these advances, a number of obstacles still hamper the proliferation of optical systems for defense and commercial applications.

Today, PICs take several forms and are defined by the materials used to create the integrated device platform. While the vast silicon electronics manufacturing ecosystem has established silicon photonics as the premier platform for the integration of thousands of high-performance passive components on a single chip, fundamental material constraints preclude efficient generation of light, or optical gain, using on-chip components. Compound semiconductors can efficiently generate light on-chip, but suffer challenges in scaling power or complexity due to high propagation loss – or loss due to light absorption, scattering or other means – and limited manufacturing maturity. An integrated platform with complete photonics functionality on a single chip would improve performance, support design innovation, and reduce development costs, enabling greater deployment and impact across many commercial sectors as well as the Department of Defense (DoD).

“Commercial data center drivers have established integrated photonics platforms that address a specific market segment,” said Dr. Gordon Keeler, program manager in DARPA’s Microsystems Technology Office (MTO). “However, DoD-relevant applications typically require components with higher optical performance, such as lower noise lasers, higher power amplifiers, or operation in different spectral bands. As a result, critical and emerging applications are unable to leverage existing integrated photonics technology effectively. The development of a more capable integrated platform tailored to specialty user needs could have revolutionary impact.”

To address the obstacles impeding the development of optical microsystems, DARPA developed the Lasers for Universal Microscale Optical Systems (LUMOS) program. LUMOS seeks to develop complete and highly capable integrated photonics platforms that enable efficient optical gain, high-speed modulation and detection, and low-loss passive functionality on a single chip. The platforms will integrate various components – lasers, amplifiers, modulators, waveguides, and detectors – onto a single substrate, providing unprecedented functionality for myriad use cases – ranging from digital and analog communications, to navigation and timing, to quantum sensing and computing. To address these requirements, LUMOS seeks to explore new materials and employ recent developments in heterogeneous integration techniques that combine best-in-class materials on a single chip.

Within the program, researchers are tasked with creating platforms optimized across three domains – complexity, power, and spectrum. With a focus on dramatically scaling the complexity and performance of silicon photonics technology, researchers will work to develop a platform that supports the integration of thousands of optical components on a single chip under the first research area. A second research area will focus on the development of high-power, high-speed photonics platforms for defense applications. A third area seeks to develop visible and near-infrared photonics platforms, capable of supporting new classes of applications such as critical sensing, timing, and quantum information applications. Each research area will explore on-chip gain integration strategies and PIC platforms tailored for application-specific needs.

To illustrate the performance gains and SWaP improvements generated by complete component integration, LUMOS will pursue demonstrations on DoD-relevant systems throughout the life of the program.

LUMOS is a part of DARPA’s Electronics Resurgence Initiative (ERI) – a five-year, upwards of $1.5 billion initiative to develop techniques and technologies for advancing microelectronics performance beyond the limits of traditional transistor scaling that has helped realize the projections of Moore’s Law. One aspect of ERI is focused on the creation of unique and differentiated domestic manufacturing capabilities that are accessible to the
1 MHz to 15 GHz

Models from

- Noise Figure as low as 0.7 dB
- IP3 up to +47 dBm
- Bandwidths up to >1 decade

Learn more at:

www.minicircuits.com
In the News

DoD. In addition to a focus on DoD-relevant applications, LUMOS seeks to develop integrated photonics platforms that can be fabricated in existing foundries, making the technology more accessible for defense users.

—DARPA

Gene Editors Could Find New Use as Rapid Detectors of Pathogenic Threats

In a twist on how gene editing technology might be applied in the future, DARPA’s newest biotechnology funding opportunity aims to incorporate gene editors into detectors for distributed health biosurveillance and rapid, point-of-need diagnostics for endemic, emerging, and engineered pathogenic threats. The “Detect It with Gene Editing Technologies” (DIGET) program could help the Department of Defense maintain force readiness by informing rapid medical response and increasing the standard of care for troops, and preserving geopolitical stability by preventing the spread of infectious disease from becoming a driver of conflict.

The overarching goal of DIGET is to provide comprehensive, specific, and trusted information about health threats to medical decision-makers within minutes, even in far-flung regions of the globe, to prevent the spread of disease, enable timely deployment of countermeasures, and improve the standard of care after diagnosis.

—DARPA

Infinite Electronics CFO Rosner Nominated for CFO of the Year

Infinite Electronics, Inc., announced that CFO Scott Rosner has been nominated for the annual Orange County Business Journal’s CFO of the Year Award.

The CFO of the Year Award program is designed to recognize senior financial professionals for their outstanding performance as corporate stewards. Candidates must be the chief financial officer (or equivalent) of a business headquartered in Orange County, Calif., and are chosen for their positive impact in the Orange County business community, as well as their outstanding leadership and performance for the preceding fiscal year.

Since joining Infinite Electronics almost two years ago, Mr. Rosner has implemented and spearheaded new financial policies and guidelines designed to ensure financial viability, grow revenue, and increase profits. His efforts and financial oversight have helped ensure that Infinite Electronics continues to realize strong revenue and EBITDA growth year over year, greatly increasing shareholder value.

“ Infinite Electronics has experienced a period of rapid expansion, and thus, our needs for financial oversight, governance, and system stability rose to an entirely new level. Scott joined our team and quickly proved himself to be a dependable and effective leader. Being recognized for this award is well deserved. I trust him implicitly as our CFO, and he is a critical member of our team in leading this company to continued success,” explained Penny Cotner, President & CEO of Infinite Electronics.
Quality PolyPhaser RF Surge Protection Products Available for Online Purchase Today!

Our expanded eCommerce capabilities now offer:

- A broad range of quality RF surge protection products
- Same-day shipping
- Expanded product data sheets and technical information
- 24/7 online support

Learn more at polyphaser.com
Call us +1 (208) 635-6400

Available for Same-Day Shipping
Tempest PC
Equipto Electronics’ new TEMPEST PC concept allows customers to choose an up-to-date ATX motherboard, or an HP or Dell i7 PC repackaged for the ultimate in secure operation. The system delivered will be certified to the strictest standard in the industry for devices operating in NATO Zone 0 environment, the NATO SDIP-27 Level A. And because the base PC is a commercial product, the package is very cost-effective.

Each system is fully customizable and typical features include (but not limited to) an Intel i7 processor, ATX motherboard to your specifications, 32 GB memory, storage options, latest Windows operating system, USB 3.0 ports, a card reader for extra security, fiber port options, DB9/DB37 connectors, and a high-performance power line filter. The system measures: 18.50” high x 6.65” wide x 17.50” deep.

Equipto Electronics
equiptoelec.com

Bandpass Filter
PMI Model No. BPF-5200M-30DB is a 5200 MHz Bandpass Filter and specifications include 3 dB bandwidth of 210 MHz Typ, Rejection -30 dBc min. @<4429 MHz & > 5229 MHz, VSWR Over 90% of the Passband of 2.0:1 Max and 3 dB Passband Insertion Loss of 8 dB Max. Unit is ~1.0” x 0.7” x 0.29” and has SMA female connectors.

Planar Monolithics Industries
pmi-rf.com

Zero-Bias Schottky Diode Detectors
Features:
• No Bias Required
• Matched Input for Excellent VSWR**
• Extremely Flat Frequency Response**

Herotek
herotek.com

Weatherproof Protection
Transtector Systems has expanded its comprehensive line of NEMA-rated equipment enclosures with a new line of polycarbonate-based cabi-
The Right RF Parts.
Right Away.

Available for Same-Day Shipping!

We’re RF On Demand, with over one million RF and microwave components in stock and ready to ship. You can count on us to stock the RF parts you need and reliably ship them when you need them. Add Fairview Microwave to your team and consider it done.

Fairviewmicrowave.com
1.800.715.4396
nets that provide weatherproof protection in an ultra-lightweight design.

The new TEPC-series enclosure family includes 44 configurations, along with a full range of accessories, to provide a highly durable, versatile solution for virtually any application. All standard configurations are in-stock for same-day shipping, helping users meet the urgent demands of today’s network builds.

Transector Systems transtector.com

RF Amplifiers

Norden Millimeter has extensive experience in product development and manufacturing of millimeter wave amplifier products to specific customer specifications with quality and customer satisfaction the ultimate objective.

MMIC technology is used extensively throughout our product base. Extensive qualification is used to insure MIC integrity during our manufacturing process and for our customer’s final application.

Norden’s line of RF amplifiers features:

- 500 MHz to 110 GHz
- Narrow-Band to multi-octave
- Military, medical, and test applications
- Low noise amplifiers available

Norden Millimeter nordengroup.com

Source Modules and More

The deployment of Gigabit Wireless is happening today. Backhaul (e.g., E-band 70-80-90 GHz) takes advantage of an atmospheric absorption “valley,” which corresponds to minimum attenuation that is conducive to applications requiring relatively longer transmit/receive paths. Similarly, mobile applications (e.g., WiGig, 802.11ad) occupy the 57-64 GHz band where atmospheric absorption can help mitigate interference in dense signal environments. OML is supplying vital frequency extension technology to characterize these emerging applications.

OML offers source modules, VNA modules and harmonic mixers that are plug-and-play compatible with modern microwave signal generators, vector network analyzers and spectrum analyzers, respectively. These modules enable engineers to easily and affordably expand their measurement capabilities to the mm-wave frontier. Using these tools, engineers can characterize their devices for emerging gigabit applications, including WiGig and E-band backhaul.

OML omlinc.com

Sector Antenna: 65-Degree Azimuth Beamwidth

KP Performance Antennas launched a new horizontal/vertical polarized, 8-port ProLine sector antenna that is ideal for broad-frequency, point-to-point, point-to-multipoint and backhaul applications.

KP’s new KPP-2HV5HVX8-65 ProLine horizontal/vertical polarized sector antenna operates in the 2.3 GHz to 2.7 GHz and 4.9 GHz to 6.4 GHz frequency ranges. It features a
JOIN US IN
LOS ANGELES
FOR IMS2020
21-26 JUNE 2020

HOW DOES CONNECTIVITY MATTER TO YOU?

IMS2020 is where Connectivity Matters.

www.ims-ieee.org
65-degree azimuth beamwidth and zero-degree fixed electrical downtilt. It also boasts 8 ports, gain performance of 17 dBi and 16.8 dBi respectively and excellent front-to-back of 31 dB and 34 dB. This antenna is engineered to deliver high, stable gain over wide bandwidths and suppress side-lobes and back-lobes for mitigating inter-sector interference.

KP Performance Antennas
kpperformance.com

Frequency Divider
Fairview Microwave introduced a new line of frequency divider modules that cover broadband frequencies from 0.1 GHz to 20 GHz. A comprehensive offering of 28 different models features fixed divide-ratios from 2 to 40. These compact prescalers are ideal for use in frequency synthesizer and phase locked loop (PLL) circuit designs, as well as test instrumentation systems. These rugged frequency dividers are typically used in applications such as satellite communications, VSAT, aerospace and defense, test and measurement, and point-to-point radio networks.

Fairview Microwave
fairviewmicrowave.com

Synthesizer: Low Phase Noise
We’re pleased to announce that we’ve increased the offerings for our high-performance, low phase noise benchtop frequency synthesizers. In sync with our evolving catalog of YIG synthesizer components, our custom-tuned benchtop YIG synthesizer line now offers RF and microwave designers working at frequencies up to 20 GHz the chance to upgrade their test benches with the best technology at their specific bands.

Offering up to -125 dBc/Hz @ 10 kHz offset phase noise at a carrier frequency of 10 GHz, these frequency synthesizers set the standard for phase noise performance. They are also capable of tuning speeds up to 50 uS over wide bands, and offer output power levels of +15 dBm, with power leveling in frequency bands up to 10 GHz.

Micro Lambda Wireless
microlambdawireless.com
Industry-Leading Design Capability

CUSTOM FILTERS

Technologies to Fit Almost Any Need!
- Fast turnaround
- Support through the life of your system

Send Us Your Specs for a Fast Response “apps@minicircuits.com”
RF Low Noise Amplifier Technology Landscape Grows More Diverse

By Tim Galla

Abstract
RF low noise amplifiers (LNAs) fabricated with solid state technology have been in use for several decades. The early transition to solid state was pioneered with germanium, has subsequently transitioned to silicon, and has now expanded to include a wide range of compound III-V semiconductors and new carbon-based materials. The rapid adoption and advancement of LNA technologies is largely due to the growth and diversification of RF applications, and the specific requirements for these new and varying use cases. These requirements include the recent focus of greater linearity demands that complex modulation schemes for 5G applications pose on receivers at millimeter-wave frequencies, large-scale deployments of automotive radar, adoption of beam steering/antenna arrays, and advancements in low-probability-of-detection/low-probability-of-intercept (LPD/LPI) and high survivability radars.

Introduction
Evolving from the early germanium transistors, modern low noise amplifiers (LNAs) are fabricated using compound semiconductors with heterojunctions and even new carbon materials. The effort and advancement in LNA device technology is driven by a growing need for LNAs with specific performance parameter improvements for the many, and growing, receiver and signal chain applications seen today. Balancing factors of cost, availability, ruggedness, noise

Figure 1 • A comparison of the highest frequency capability of several transistor technologies considered for terahertz applications. (Source [1.3]) https://www.mdpi.com/sensors/sensors-19-02454/article_deploy/html/images/sensors-19-02454-g001-550.jpg
isn't substantially different from that of producing conventional silicon transistors (much of the same infrastructure can be used). SiGe transistors are also used in cryogenic applications, due to their wide operating temperature capability. Commonly, SiGe heterojunction bipolar transistors (HBTs) are the type of transistor used for high frequency and high performance applications. This includes devices that operate to a significant fraction of a terahertz [1.3].
The most common application, historically, for SiGe technology has been in cell phone receivers, as the combination of low noise and wide dynamic range in the cellular spectrum (700 MHz to 3 GHz) compared to conventional silicon made this technology more viable [1.4].

Advantages of SiGe LNAs over CMOS LNAs [2.1, 2.2]

- Lower inherent noise
- Better input match for optimized gain
- Improved gain/noise figure trade-off
- Better linearity (higher dynamic range)
- Possibility of die size advantages at innate input match is superior and additional on-chip inductors aren’t needed
- SiGe BiCMOS brings the best of both worlds
- Operation well into millimeter-wave and sub-millimeter wave frequencies

Silicon Germanium:Carbon (SiGe:C)

With the addition of carbon to SiGe heterojunction transistors, even more control of a silicon transistor’s band-gap is possible. Moreover, with added carbon, SiGe:C HBTs have demonstrated lower noise figure, higher collector current, higher unity gain frequency, and better linearity than Si BJTs. In essence, SiGe:C provides the advantages of SiGe with even greater maximum frequency and lower noise figure while still maintaining compatibility with mainstream silicon fabrication process. Hence, SiGe:C BiCMOS processes are capable of producing cost effective and still high performance wireless device chips, including complete Systems-on-Chip (SoCs) for applications such as Bluetooth, wireless data links, 3G/4G LTE, 5G low-/mid-/high-band, WiFi, automotive radar, and fiber optic drivers.

Gallium Arsenide (GaAs) for RF LNAs

With advances in semiconductor processing technologies that include metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE), compound semiconductors based on III-V materials deposited in this layers became possible. Thus GaAs substrates and AlGaAs/GaAs high electron mobility transistors (HEMT) were born and found use in a wide range of high performance, frequency, and bandwidth applications. One of the
Largest Selection in the Industry!

- Now over 300 Models in Stock!
- Case Styles as small as 0202
- Rejection up to 52 dB
- Steep Skirts

Mini-Circuits®

(718) 934-4500 sales@minicircuits.com www.minicircuits.com
main advantages of AlGaAs/GaAs HEMTs is an increase in bandgap over GaAs of 1.4 eV to 1.8 eV.

Further advances led to the development of Pseudomorphic HEMTs (pHEMTs), which required the use of InGaAs material to increase the electron mobility in the 2-dimensional region, with the result of yielding higher transconductance.

However, lattice mismatch and the mechanical strain of using Indium sets a limit of roughly 30% Indium concentration, limiting the overall potential performance increase from the pHEMT design. Innovation of an additional InAlGaAs buffer layer and a graded Indium concentration to achieve better lattice constant match with the GaAs substrate and InGaAs channel, led to the development of ever higher frequency and lower noise performing metamorphic HEMT (MHEMT) devices. MHEMTs made with GaAs substrates are generally lower cost, benefit from Gallium’s higher crystal quality, have better mechanical strength, and have a larger 6” wafer size compared to Indium substrates.

In industry, GaAs HEMT, pHEMT, and mHEMT processes are all used to make practical and high performance LNAs. These devices. Generally, for upper micro-wave and millimeter-wave frequencies, pHEMT and mHEMT transistors are used instead of standard HEMTs. Hence, there are ultra-wide bandwidth (UWB) GaAs LNAs that operate to several gigahertz, tens of gigahertz, and to hundreds of gigahertz. There are also many GaAs LNA technologies that have been approved/certified for use in space as well as aerospace vehicles. GaAs LNAs, power amplifiers (PAs), and transmit/receive (TR) modules are commonly used in many aerospace, defense, and security (ADS) applications, as well as automotive, cellular, and is being evaluated for upcoming 5G small cells and handsets [3.1].

GaAs technologies are some of the most widely used for LNA applications due to GaAs good noise figure performance, reasonable gain and power, as well as balance of cost and technological maturity. GaAs LNAs typically have a higher noise figure than InP and tend not to operate to as high frequency (with the exception of some GaAs MHEMTs). Moreover, GaAs LNAs tend to have a lower noise figure than GaN, but have a much lower maximum operating voltage.

Indium Phosphide (InP) for RF LNAs

InP LNAs are generally considered some of the lowest noise figure and highest frequency performance LNAs. Much like with GaAs HEMTs, and pHEMTs, layers of InAlAs and InGaAs are placed on an InP substrate to develop high bandwidth and high frequency transistors. Also similar with GaAs LNAs, UWB LNAs are often developed in cascaded or distributed approaches that achieve low noise figure over tens of gigahertz of bandwidth. These types of LNAs are sometimes called low noise distributed amplifiers (LNDAs). InP HEMT transistors are sometimes fabricated on substrates, such as silicon carbide (SiC) for high voltage and high power applications, and SiC exhibits better thermal conductivity performance than InP substrates.

InP HEMT transistors can typically handle higher voltage and power than GaAs transistors, especially at higher frequencies. However, InP technologies are more expensive and are generally less widely used than GaAs HEMTs. InP LNAs are common in test and measurement equipment, radio astronomy, highly sensitive radar, fiber optic receivers, cryogenic sensors and other applications that require the lowest noise figure and highest frequency. These applications include LNAs that operate from several gigahertz and into the terahertz range.

More recent research of InP LNAs involves the development of double HBTs (DHB Ts). DHB T processes exhibit a wider bandgap and higher breakdown voltage compared to HEMT devices, which is desirable for high power and high frequency applications, but also distributed LNAs [4.1].

Gallium Nitride (GaN) for RF LNAs

GaN is a widely hyped and emerging transistor technology that is finding use in high power and high frequency applications in virtually all microwave and millimeter-wave applications. GaN devices exhibit a very high breakdown voltage and power density capability that far exceeds GaAs and InP. Hence, GaN devices are most often used in PA applications.

However, there are some cases in which receivers experience high input powers. In these cases, limiters are added to the input of the LNA, which intrinsically reduces both noise and bandwidth performance of the receiver. These applications typically include receivers that experience jamming or high levels of interference (solar storms/cosmic radiation). An alternative is to use GaN-based LNAs with much higher input power capability, while still offering good noise figure features. GaN LNAs have been reported to survive input power levels over 30 dBm continuous wave (CW) and nearly 50 dBm pulsed [5.1]. Moreover, extremely high linearity GaN LNAs have also been demonstrated with third-order output intermodulation points (OIP3s) around 40 dBm [5.1]. Both GaN HEMT LNAs and GaN FET LNAs have been studied for the purpose of developing high-survivability LNA technology.

Silicon (RF CMOS/SOI/BiCMOS) for RF LNAs

Stressing cost efficiency and compatibility with existing semiconductor manufacturing and processing infrastructure, there are a wide range of various Si-based transistor technologies that can be used to make RF LNAs. This includes silicon-on-insulator (SoI) technologies, which are now a significant contributor to cellular
user equipment (UE). GaAs and RF SoI are competing technologies for 4G and upcoming 5G technologies, but still lacks GaAs in transmitter and receiver performance [6.1].

However, Si-based LNA technologies do benefit from enhanced integration with other components, devices, and domains, which enables the realization of complete RF front-end modules (FEM) systems-on-chip (SoC). As a consequence of Si-based LNA integration and cost efficiency, there are many CMOS and SoI technologies used commercial products, such as Bluetooth, WiFi, Zigbee, Cellular, and other Internet-of-things (IoT) modules, as well as part of larger SoCs and ICs with integrated wireless modules.

Generally, Si-based LNA applications operate to a maximum of several gigahertz. In some cases, advanced SoI and CMOS technologies are being pioneered for millimeter-wave frequencies in anticipation of upcoming millimeter-wave 5G user equipment, handsets, and base stations in addition to potentially reducing costs of millimeter-wave radar used in automotive driver-assist systems.

Carbon Nanotubes (CNTs) for RF LNAs

For several years there has been the hope of developing carbon-based transistors that can compete with semiconductors that are more expensive or are limited resources. Recently, there has been innovation in the use of carbon-nanotube (CNT) transistors that can operate to millimeter-wave frequencies [7.1,7.2]. In one example, CNT FETs were developed that demonstrate high inherent linearity and may potentially be used to realize future high frequency and wide bandwidth LNAs [7.1].

Conclusion

LNAs are key devices in virtually all RF systems. Depending on the needs of a technology there are now a wide-range of semiconductors and device technologies to choose from. The end-performance of these LNAs depends largely on the inherent properties of the semiconductor, as well as the device type and design of the LNA circuit. This article provided a brief overview of modern LNA technologies, as well as mentioned potential upcoming carbon-nanotube technologies with high inherent linearity that may be used to build future LNAs with extreme linearity.

About the Author

Tim Galla serves as Product Manager at Pasternack.

References

1. General
 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603590/
 4. Circuits at the Nanoscale: Communications, Imaging, and Sensing edited by Krzysztof Iniewski
2. Silicon Germanium RF Low Noise Amplifiers
3. Gallium Arsenide RF Low Noise Amplifiers
4. Indium Phosphide RF Low Noise Amplifiers

5. Gallium Nitride RF Low Noise Amplifiers

6. Silicon RF CMOS RF Low Noise Amplifiers

7. Carbon Nanotube RF Low Noise Amplifier
ATC’s 400 Series NPO Capacitors for Precision Tuning Solutions

TIGHTEST TOLERANCES AVAILABLE IN THE INDUSTRY (to ±0.01 pF)

• Ideal for Precision RF/Microwave Tuning Applications
• EIA Case Sizes
• Saves Time, Eliminates Need for End Process Tuning
• Reduces Manufacturing Cost
• Superior Reliability

Features:
• Capacitance: 0.1 pF to 68 pF
• Tightest Tolerance to ±0.01 pF
• Ultra-stable Performance
• EIA 01005, 0201, 0402 and 0603 Case Sizes
• Voltage Rating: up to 200 WVDC
• Unit-to-Unit Performance Repeatability
• RoHS Compliant / Lead-Free

Precision Tuning Applications:
• Filter Networks
• Matching Networks
• High Q Frequency Sources
• Antenna Element Matching and Tuning

www.atceramics.com
Lowpass Filter

Model SCF-55375330-2F2M-L1 is a coaxial lowpass filter with a pass band from DC to 55 GHz. The typical insertion loss of the pass band is 1.5 dB. The rejection band is from 75 to 110 GHz with a typical rejection value of 30 dB. The RF connectors of the filter are male and female 2.4 mm connectors. The passband typical return loss is 15 dB. Other configurations, such as different connectors for input and output are available under different model numbers.

SAGE Millimeter
sagemillimeter.com

Coaxial Lowpass Filter

Model SCF-25340330-KFKM-L1 is a coaxial lowpass filter with a pass band from DC to 25 GHz. The typical insertion loss of the pass band is 0.6 dB. The rejection band is from 40 to 60 GHz with a typical rejection value of 30 dB. The RF connectors of the filter are K(F) and K(M) connectors. The passband typical return loss is 15 dB. Other configurations, such as different connectors for input and output are available under different model numbers.

SAGE Millimeter
sagemillimeter.com
RF and Microwave Components

Herotek has been a quality supplier of RF and Microwave components since 1982. Herotek is a broad-based, high technology company supplying parts for the Military, Industrial and Commercial markets with designs from DC to 75 GHz. It offers standard products as well as thousands of custom designs, and is happy to match existing products. Herotek offers Detectors, Comb Generators, Limiters, Switches, GaAsFet Amplifiers (Broadband, Low Noise, and Power) and integrated subsystems of many types, including up and down converters, multipliers, harmonic mixers, and transceivers.

Herotek
herotek.com

E-Book: MW and RF Design

The Third Edition of Microwave and RF Design (A Multi-Volume Set), authored by Professor Michael Steer of North Carolina State University, is a comprehensive free OpenAccess electronic textbook focusing on RF systems design. It is intended for advanced undergraduate and graduate students, as well as professionals. The textbook covers microwave components, as well as how they fit into modern radio, radar, and sensor systems. It enables the student to achieve a good understanding of how system-level decisions affect component and subsystem design and how the capabilities of technologies, components, and subsystems impact system design.

NI AWR
Interconnect Solutions

Experience the Delta Difference. Delta Electronics is a leading global provider of innovative RF, microwave and millimeter wave interconnect solutions. We’re proud to deliver a world-class customer experience - what we call the Delta Difference, by focusing on four key areas: Purpose, Process, People and Products/Solutions. The products we make keep people safe, connected, and informed in every type of environment. Knowing that our work makes a difference to people in mission critical situations around the world gives Delta a strong sense of purpose and pride.

Delta Electronics
deltarf.com

Test Equipment and Subsystems

dBm develops and manufactures test equipment and subsystems for the RF marketplace, including wireless telecommunications, satellite systems, and military applications. We specialize in RF link impairment emulation for terrestrial and satellite wireless systems. Our link emulation products have been used in virtually every major satellite system developed since the early 1990s.

The founders of the company joined together with decades of experience in the creation of RF test equipment and in providing outstanding customer support. We are a small business that takes pride in every product we deliver.

dBm
dbmcorp.com
KRYTAR, founded by Thomas J. Russell in 1975, is a privately owned California corporation specializing in the manufacture of Ultra Broadband mmWave, Microwave, and RF components and test equipment for both commercial and military applications. The KRYTAR product line includes directional couplers, directional detectors, 3 dB hybrids, MLDD power dividers/combiners, detectors, terminations, coaxial adapters and a power meter. Our products cover the DC to 110.0 GHz frequency range. The broadband design expertise at KRYTAR has created unique new designs, several of which are patented. KRYTAR has applied these designs to consistently introduce technologically advanced products with superior electrical performance and ruggedness.

Our modern facility houses a completely equipped machine shop, including CNC lathes and mills. The corporation also possesses all the electronic test equipment necessary for testing its products from DC to 110 GHz. Included in the test equipment is a Hewlett Packard 8510B Automatic Network Analyzer with 8515A (45 MHz – 26.5 GHz) and 8517A (45 MHz – 50.0 GHz) S-Parameter Test Sets and Agilent Technologies E8361A PNA Series Network Analyzer (10 MHz – 67 GHz) along with equipment to cover 110 GHz. The KRYTAR Quality Assurance Program is in accordance with MIL-I-45208 including a calibration system per MIL-STD-45662. To ensure reliability and performance, the quality assurance system controls all phases of manufacturing: purchasing, machining, processes, assembling, testing and shipping.

KRYTAR has a commitment to technical excellence and customer satisfaction. These principles form the basis for the steady growth that has earned KRYTAR an enviable reputation in the microwave community.

KRYTAR
krytar.com

Solutions for 5G & mmWave Applications
KRYTAR specializes in the design and manufacturing of ultra-broadband, high-performance microwave components and test equipment. Our products cover DC to 110 GHz and are the ultimate solution for the emerging designs and test and measurement applications for 5G and mmWave. The broadband design expertise at KRYTAR has created unique new designs, several of which are patented. KRYTAR has applied these designs to consistently introduce technologically advanced products with superior electrical performance and ruggedness.

- Directional Couplers to 110 GHz
- Power Dividers
- 3 dB 90 Degree Hybrid Couplers
- 3 dB 180 Degree Hybrid Couplers
- Beamforming

www.krytar.com
1288 Anvilwood Avenue • Sunnyvale, CA 94089
Toll FREE: +1.877.734.5999 • FAX: +1.408.734.3017 • E-mail: sales@krytar.com

Get info at www.IHeLink.com
Stocking Distributor

Microwave Components, Inc., was established in 1980 as a specialized RF/Microwave and more recently, millimeter wave stocking distributor. We specialize in interconnect products and low loss cable/cable assemblies and several other RF components from antennas to board level components. More recently, we offer customers an avenue to integrated microwave assemblies for a custom designed solution for evolving market needs for miniaturized multi-function devices. The markets we serve include aerospace/defense, telecommunications, test & instrumentation and others.

Microwave Components
mwc-llc.com

White Paper: Be Ready for 5G Fronthaul Challenges

5G communications networks are being rolled out to support high demand of various advanced requirements such as ultra-fast speeds, high reliability and low latency as well as multiple simultaneous connections.

As you implement 5G networks, you need reliable, multi-functional test equipment to support both today’s and future measurement requirements for 5G and beyond.

The Network Master™ Pro MT1000A now supports 100 Gbps with Ethernet Common Public Radio Interface (eCPRI) and IEEE 1914.3 Radio over Ethernet (RoE), as well as high-accuracy delay measurement functions. With the new firmware installed, the MT1000A can efficiently install and maintain 5G networks carrying eCPRI/RoE traffic.

Download our white paper today at: https://info.goanritsu.com/l/492921/2019-03-08/95zk9.
Anritsu
anritsu.com
Modular Hardware and Software

For more than 40 years, NI has developed high-performance automated test and automated measurement systems to help you solve your engineering challenges now and into the future. Our open, software-defined platform uses modular hardware and an expansive ecosystem to help you turn powerful possibilities into real solutions.

Today’s greatest engineering accomplishments are just a preview of the future. NI thinks beyond today’s challenges, so you can develop tomorrow’s solutions.

National Instruments
ni.com

Oscillators, Filters, Synthesizers

For the RF and microwave designer, choices in components and instruments range from ordinary performance to the absolute best. And when it comes to oscillators, filters, and synthesizers, nothing beats Micro Lambda’s YIG-tuned technology.

Our YIG devices and equipment offer the biggest names in the EW, ISM, and aerospace industry the lowest phase noise and superior multi-octave tuning capability. With this technology in-hand, they’re creating the next-generation of test instruments, signal generators, spectroscopy equipment, receivers, jammers, communication systems, and more.

Micro Lambda Wireless
microlambdawireless.com
Filter

Model SCF-21333330-KFKM-L1 is a coaxial lowpass filter with a pass band from DC to 21 GHz. The typical insertion loss of the pass band is 0.6 dB. The rejection band is from 33 to 50 GHz with a typical rejection value of 30 dB. The RF connectors of the filter are K(F) and K(M) connectors. The passband typical return loss is 15 dB. Other configurations, such as different connectors for input and output are available under different model numbers.

SAGE Millimeter
sagemillimeter.com

Pass Band: DC to 16.5 GHz

Model SCF-17327330-KFKM-L1 is a coaxial lowpass filter with a pass band from DC to 16.5 GHz. The typical insertion loss of the pass band is 0.6 dB. The rejection band is from 26.5 to 40 GHz with a typical rejection value of 30 dB. The RF connectors of the filter are K(F) and K(M) connectors. The passband typical return loss is 15 dB. Other configurations, such as different connectors for input and output are available under different model numbers.

SAGE Millimeter
sagemillimeter.com
Cable Assembly

Teledyne Reynolds unveiled a major new addition to the high voltage product line called Ruggedized PeeWee, or “PWR.” Built on decades of experience developing subminiature, high voltage connectors, the PWR’s new robust design also benefits from Teledyne’s extensive experience designing Space-level products. The new Ruggedized PeeWee line is fully compatible and inter-matable with all push-pull PeeWee assemblies.

Like its original counterpart, Ruggedized PeeWee offers the standard 12 kVDC altitude voltage rating, guaranteeing reliable performance in harsh environmental conditions up to 70,000 ft. However, these PWR assemblies also offer a new 18 kVDC rating for ground-based applications up to 10,000 ft., which is especially suitable for medical, instrumentation, and semiconductor inspection equipment usage.

Teledyne Reynolds
teledyne.com

Adapters, Connectors, and More

Fairview Microwave is a leading provider of high-quality RF and microwave components including adapters, connectors, attenuators, coaxial cables, terminations, and much more. Specializing in immediate product needs, we offer same-day shipping on thousands of in-stock items with no minimum purchasing requirements. Since 1992, Fairview has been recognized for delivering unsurpassed quality, but our true strength lies on our customer service. We go to great lengths to get you the component you need as rapidly as possible and we do it all with a passion.

Fairview Microwave
fairviewmicrowave.com
Continuing Education: Your Key to Success

Studies reveal that within each 3-5 year period, one-half of an engineer’s technical knowledge becomes obsolete. New graduates soon discover that university education provides only the foundation of knowledge that is realistically needed to perform well in the industry. Continued education is a must for survival in today’s competitive market. Application of modern computer-aided engineering to RF and microwave circuit and system design is vital to manufacturing products with high quality and yield. Modernization of the design laboratory and production floor is critical to maintaining a competitive edge.

A well-planned continuing education program will enable your company to meet these goals. As a recognized international leader in continuing education, Besser Associates is dedicated to serving the needs of RF and wireless professionals.

The Latest Tools and Techniques are Featured

Our instruction combines theory and practice into one complete and “user-friendly” package that attendees may apply on the job immediately. Whether it’s reviewing basics for the inexperienced, or the latest CAD techniques for more seasoned designers, Besser Associates’ courses offer meaningful education for every participant.

Our Instructors

Besser Associates instructors are recognized experts in their field. They are top-notch design engineers, skilled in both technology and the art of instructing. With an average of more than 20 years of education and practical first-hand experience, our instructors bring a wealth of training and information to the courses they present. Equally important, our trainers communicate effectively; they know how to reach both novice and veteran professionals.

Besser Associates
besserassociates.com

Corporate Training Services

Besser Associates can provide our online and traditional classroom courses exclusively for your team. Our instructors can present almost any course from our full catalog at your domestic or international location. Contact us for more details!

www.besserassociates.com

info@besserassociates.com

Get info at www.HFeLink.com

RF Technology Certification
Next Session Starts Jan 31, 2020 - Online

Applied RF Engineering I
Next Session Starts Jan 27, 2020 - Online

Phased Array Radar
February 24 to 26, 2020, San Diego, CA

mmWave RFIC and MMIC Design Techniques
February 24 to 26, 2020, San Diego, CA

5G, mmWave Antennas: Propagation and Phased Arrays
February 27 to 28, 2020, San Diego, CA

Radio Systems: RF Transceiver Design from Antenna to Bits & Back
February 24 to 28, 2020, San Diego, CA

RF Power Amplifier Design Techniques
Please check our website for the latest schedule

EMI/EMC and Signal Integrity Boot Camp
Please check our website for the latest schedule

5G Radio Systems and Wireless Networks
Please check our website for the latest schedule
Product Highlights

Discrete Power GaN HEMTs and More

AMCOM RF Transistors include Discrete Power GaN HEMTs, GaAs FET (good linearity at back-off) and GaAs pHEMT (good power density and efficiency).

AMCOM has all the expertise, manpower, space, and equipment for manufacturing state-of-the-art products. Some of our capabilities are: active device design, MMIC design, and power amplifier module design. In addition, we are experts in device/MMIC packaging, module assembly and RF/DC testing. For active devices, we either procure parts such as silicon LDMOS, or GaN HEMT, or we use a semiconductor foundry to fabricate our own proprietary device/MMIC.

One of our specialty products is high-power, broadband, high-efficiency power amplifiers.

AMCOM was established in December 1996 by a group of microwave designers experienced in both microwave circuit design and microwave device fabrication technology. It is located in Gaithersburg, Maryland, USA, about 20 miles northwest of Washington, DC.

The company has earned a reputation as a leading edge microwave design organization that includes power FETs, MMIC power amplifiers, as well as high-power amplifier modules with RF and DC connectors that are ready to be used in microwave systems. One of our specialty products is high-power, broadband, high-efficiency power amplifiers.

AMCOM amcomusa.com

AMCOM’s AM06013033WM-XX-R is a broadband GaAs MMIC which operates between 6 and 13 GHz with 28 dB gain and 33 dBm output power. This MMIC is available in both bare die form (AM06013033WM-00-R) and packaged form (AM06013033WM-EM-R). The EM package is a ceramic package with a flange and straight RF and DC leads for drop-in assembly. The MMIC input and output are internally matched to 50 Ohms.

FEATURES
- Ultra-Broadband from DC to 20 GHz
- Saturated output power Psat is 26 dBm
- Gain, 13.5 dB
- Input & output matched to 50 Ohms

AMCOM’s AM06020026WM-00-R is a broadband GaAs MMIC Distributed Power Amplifier die which operates between DC and 20 GHz. This amplifier has 13.5 dB gain, and 26 dBm output power. The chip input and output are internally matched to 50 Ohms.

FEATURES
- Ultra-Broadband from 2 to 18 GHz
- Saturated output power Psat is 26 dBm
- Gain, 23.5 dB
- Input & output matched to 50 Ohms

AMCOM’s AM02018026WM-00-R is a broadband GaAs MMIC Distributed Power Amplifier die which operates between 2 and 18 GHz. This amplifier has 23.5 dB gain, and 26 dBm output power. The chip input and output are internally matched to 50 Ohms.

www.amcomusa.com

401 Professional Drive, Gaithersburg, MD. 20879 - Phone 301.353.8400 - www.amcomusa.com - info@amcomusa.com

Get info at www.HFeLink.com
Microwave Transceiver

The NUDC2-18/1.3-2.3 is a dual conversion Transceiver providing 2-18 GHz operation in a versatile OpenVPX platform. The NUDC2-18/1.3-2.3 includes internal LOs which provide an instantaneous IF bandwidth of 1 GHz and exceptional Noise Figure: Down Converter NF= 6dB max, Up Converter NF=15dB max. Both the RF and IF paths include variable attenuation. The NUDC2-18/1.3-2.3 is digitally controlled by RS-485.

Norden Millimeter
nordengroup.com

Solutions for Military, Space Applications

Skyworks Solutions unveiled its latest high reliability solutions for demanding military and space applications with stringent operating requirements. Skyworks’ hermetically sealed, broadband low-noise and impedance-matched amplifiers function in harsh environments and can be leveraged in a multitude of communication platforms. With all peripheral components integrated into an optimized ceramic QFN package, these devices simplify the design process and reduce board space while delivering robust performance for next generation aerospace and defense applications such as satellites and avionics systems.

Skyworks Solutions
skyworksinc.com
VNA Extension Modules

OML offers three configurations of the VNA Frequency Extension Module to expand your existing Keysight or Anritsu vector network analyzer to millimeter frequencies: T/R, T, and S. Depending on your S-parameter needs, refer to the following block diagrams to configure our module(s) with your existing VNA test port(s). With flexible ordering configurations, we can satisfy your preferences for economical and high performance needs.

OML
omlinc.com

mmWave Solution

Analog Devices introduced a solution for millimeter wave (mmWave) 5G with the highest available level of integration to reduce design requirements and complexity in the next generation of cellular network infrastructure. The new mmWave 5G chipset includes the 16-channel ADMV4821 dual/single polarization beamformer IC, 16-channel ADMV4801 single-polarization beamformer IC and the ADMV1017 mmWave UDC.

Analog Devices
analog.com

24 - 40 GHz sub-Harmonic Pumped Mixer

Ideal for testing and validating 5G solutions.

Typical M28H2KS Mixer Conversion Loss
(LO = 11.5 – 12.5 GHz, IF = 1.0 GHz)

M28H2KS/DP1921 Assy

(±12 dBm typ.
12 - 20 GHz)

(24 - 40 GHz)

(±12 dBm typ.
12 - 20 GHz)

(24 - 40 GHz)

(10 GHz)

Frequency (GHz)

Innovation in Millimeter Wave Solutions
www.omlinc.com
(408) 779-2698

Get info at www.HFeLink.com
How to
BOOST SALES
Via a Cost-Effective
PR Campaign

- Press Releases
- Articles
- White Papers
- Online and in Print

Tim Burkhard has 30 years of proven experience promoting companies, technology, and products in the RF and Microwave space. Multiple studies show that increasing PR increases your bottom line, in good times and bad.

Cost-effective and targeted PR, promotion, and advertising experience.

Exposure equals leads equals sales opportunities. Call or email today for a free quote from a proven professional.

Tim Burkhard
tpburk@aol.com 707-696-2162

Product Highlights

Broadband Resistors
PPI Broadband Resistors are specifically designed to operate at frequencies up to 67 GHz. With special microwave laser-trimming used to ensure a tight tolerance at high frequencies, these Broadband Resistors are wire bondable, solderable, and can be used in a flip-chip configuration.

Applications: Optical Transceiver Modules, Broadband Receiver, TOSA/ROSA, Broadband Test Equipment, Low Noise Amplifiers, MMIC Amplifiers,

Markets: Opto-Electronics, Telecom, Broadband, Military, Satellite Communications.

Passive Plus
passiveplus.com

Robust Inductors
Gowanda is a leader in the design and production of robust inductors for the military/aerospace and defense industries. The company’s success is derived from decades of magnetics expertise combined with focused attention on the requirements in such demanding applications and a collaborative relationship with customers’ design engineering teams. Numerous inductor series have achieved Qualified Product List status as a result of Gowanda’s commitment to the process controls, testing, and investment required. Gowanda’s capabilities include ruggedized designs, high temperature interconnects, high current, shielded, and more.

Gowanda
gowanda.com
Pulsed Laser Diode Drivers from AVTECH

Each of the 19 models in the Avtech AVO-9 Series of pulsed laser diode drivers includes a replaceable output module with an ultra-high-speed socket, suitable for use with sub-nanosecond pulses. Models with maximum pulse currents of 0.1A to 10A are available, with pulse widths from 400 ps to 1 us. GPIB, RS-232, and Ethernet control available.

Model AVO-9A-B

Pricing, manuals, datasheets, test results at www.avtechpulse.com/laser

Resistive Power Divider with N Female Connectors

BroadWave Technologies unveiled a new resistive power divider featuring an operating frequency range of DC to 6 GHz. Model 152-215-002 is a 50-Ohm, 2 way power divider. This unit has an average power rating of 2 Watts with 1.50:1 maximum VSWR. The insertion loss is 6 dB +/- 1.5 dB nominal, the operating temperature range is 0°C to +70°C and RF connectors are N female.

BroadWave Technologies manufactures a wide variety of resistive power dividers in 2, 3, 4, 5, 6 and 8 way configurations. Available connector types are BNC, N, SMA and TNC or mixed connector types for unique applications. Average power is up to 10 Watts for standard units. Many models are in stock.

BroadWave Technologies
broadwavetechnologies.com
Ducommun offers Switch Matrix Solutions!

For additional information contact our sales team at: 310-513-7233 or rfsales@ducommun.com

Get info at www.HFeLink.com
VNA: 100 kHz to 40 GHz

The R&S ZNBT40 from Rohde & Schwarz is the first vector network analyzer (VNA) with a broad frequency range from 100 kHz to 40 GHz and up to 24 integrated test ports. Developers can use it for applications such as measurements on 5G antenna arrays. The multiport architecture is not only advantageous for tests on multiport components, but also for simultaneous testing of multiple DUTs in production to boost throughput. Rohde & Schwarz ensures specified performance on up to 24 test ports with the R&S ZNBT40. Also new is the R&S ZNBT26 for measurements up to 26.5 GHz.

Rohde & Schwarz
rohde-schwarz.com

Attenuator

PMI Model DTA-2G18G-60-CD-2-OPT-1G18G is a non-reflective, 10 BIT, programmable 60 dB, pin diode attenuator with step resolution as low as 0.06 dB over the frequency range of 1.0 to 18.0 GHz. Specifications include insertion loss of 4.5 dB; VSWR 2.0:1 maximum; attenuation accuracy of ±1.0 dB @ 0 to 20 dB, ±1.5 dB @ 20 to 40 dB and ±2.0 dB @ 40 to 60 dB; typical attenuation flatness of ±1.0 dB @ 20 dB, ±1.25 dB @ 40 dB and ±3.0 dB @ 60 dB; switching speed 1.0 µs and This model is offered in a slim line housing measuring 2.0” x 1.8” x 0.5” with SMA female connectors and a 15 PIN Micro-D-Female control connector. Mating Micro-D Male connector supplied.

Planar Monolithics Industries
pmi-rf.com
FILTERS

Eliminate Stopband Reflections

DC to 40 GHz

- Patented internal load eliminates out of band signals
- Ideal for non-linear circuits
- Now available surface mount and tubular SMA case styles
MMIC Power Splitter/Combiner Channels DC to 18 GHz
Mini-Circuits’ model EP4KA+ is a four-way 0-deg. power splitter/combiner with wide frequency range of 10.7 to 31.0 GHz. Insertion loss above the 6-dB four-way power split is minimal, typically 0.4 dB from 10.7 to 13.0 GHz, 0.6 dB from 13 to 22 GHz, and 1.1 dB from 22 to 31 GHz. Typical isolation between ports is 13.1 dB from 10.7 to 13.0 GHz, 19.3 dB from 13 to 22 GHz, and 21.5 dB from 22 to 31 GHz. The resistive/reactive design is fabricated with GaAs MMIC technology and supplied in a surface-mount QFN package measuring just $5 \times 5 \times 1$ mm. It can handle as much as 0.6 W input power as a divider and as much as 0.6 W per port as a combiner. The 50-Ω RoHS-compliant power splitter/combiner exhibits low 1.40:1 VSWR at all ports with excellent amplitude and phase unbalance. It has an operating temperature range of -55 to +105°C and is a good match for broadband communications and test applications.

MMIC Power Splitter/Combiner Channels DC to 18 GHz
Mini-Circuits model EP4RKU+ is a four-way 0-deg. power splitter/combiner with broadband frequency range of DC to 18 GHz. Insertion loss above the 6-dB four-way power split is extremely low, typically 4.2 dB from DC to 4 GHz and only 3.4 dB from 4 to 18 GHz. The tiny splitter/combiner handles maximum full-band power of 0.6 W as a divider and as much as 0.6 W per port as a combiner. The 50-Ω RoHS-compliant component is fabricated with GaAs MMIC technology; the resistive/reactive design extends the EP power splitter/combiner series to DC. The splitter/combiner is supplied in a surface-mount QFN package measuring just $5 \times 5 \times 1$ mm. Despite the small size, the typical isolation between ports is 20 dB at 9 GHz. With outstanding amplitude and phase unbalance, the power splitter/combiner is a good fit for a wide range of wireless communications and test-and-measurement applications. It is designed for operating temperatures of -55 to +105°C.

MMIC Amplifier Maintains Flat Gain from 50 MHz to 8 GHz
Mini-Circuits’ model PHA-83W+ is a high-dynamic-range MMIC amplifier with broad frequency range of 50 MHz to 8 GHz. It runs on 5 or 9 V dc supply voltage, with typical gain of 10 dB or better and gain flatness of ±2.8 dB across the full frequency range with a 5-V dc supply and typical gain of 14.2 dB and gain flatness of ±1.4 dB across the full frequency range with a 9-V dc supply. The noise figure is typically 3.1 dB or less from 50 to 4000 MHz and typically 4.7 dB or less across the full frequency range. The miniature 50-Ω amplifier delivers typically +15.9 dBm or more output power at 1-dB compression from 50 to 4000 MHz, and typically +13.2 dBm or more across the full frequency range. The RoHS-compliant GaAs pHEMT amplifier is supplied in a thermally efficient SOT-89 package and has an operating temperature range of -40 to +85°C.

SP6T Switch Matrix Commands DC to 40 GHz
Mini-Circuits’ model RC-1SP6T-40 is a PC-controlled electromechanical single-pole, six-throw (SP6T) switch matrix for applications from DC to 40 GHz. The rugged unit can handle as much as 5 W signal power during cold switching and is rated for at least 2 million switch cycles with cold switching. The SP6T switch matrix can be controlled with a PC running Windows 98 or later operating system (OS); graphical-user-interface (GUI) and other support software is available for free download from the Mini-Circuits site. The switch matrix is equipped with 2.92-mm female coaxial connectors on all RF ports and USB and Ethernet ports for control connections. It features typical insertion loss of 0.2 dB from DC to 12 GHz, 0.4 dB from 12 to 26 GHz, and 0.7 dB from 26 to 40 GHz. Typical isolation is 90 dB from DC to 12 GHz, 80 dB from 12 to 26 GHz, and 70 dB from 26 to 40 GHz. The 50-Ω switch matrix is designed to run on +24 V dc and at operating temperatures of 0 to +40°C. It has typical switching speed of 25 ms and worst-case VSWR of 2.20:1 across the full frequency range. It is supplied in a rugged metal case measuring $5.5 \times 6.0 \times 2.75$ in. (139.70 × 152.40 × 69.85 mm).
Advertiser Index

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCOM</td>
<td>39</td>
</tr>
<tr>
<td>American Technical Ceramics</td>
<td>29</td>
</tr>
<tr>
<td>Avtech Electrosystems</td>
<td>43</td>
</tr>
<tr>
<td>Besser Associates</td>
<td>38</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>11</td>
</tr>
<tr>
<td>C. W. Swift & Associates</td>
<td>C2</td>
</tr>
<tr>
<td>dBm</td>
<td>7</td>
</tr>
<tr>
<td>Delta Electronics</td>
<td>1</td>
</tr>
<tr>
<td>Ducommun</td>
<td>44</td>
</tr>
<tr>
<td>Herotek</td>
<td>14</td>
</tr>
<tr>
<td>IMS 2020</td>
<td>19</td>
</tr>
<tr>
<td>Fairview Microwave</td>
<td>17</td>
</tr>
<tr>
<td>KRYTAR</td>
<td>33</td>
</tr>
<tr>
<td>Luff Research</td>
<td>43</td>
</tr>
<tr>
<td>Micro Lambda Wireless</td>
<td>9</td>
</tr>
<tr>
<td>Microwave Components</td>
<td>3</td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>13</td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>21</td>
</tr>
<tr>
<td>Mini-Circuits</td>
<td>25</td>
</tr>
<tr>
<td>National Instruments</td>
<td>46</td>
</tr>
<tr>
<td>National Instruments</td>
<td>5</td>
</tr>
<tr>
<td>National Instruments</td>
<td>28</td>
</tr>
<tr>
<td>Norden Millimeter</td>
<td>23</td>
</tr>
<tr>
<td>OML</td>
<td>41</td>
</tr>
<tr>
<td>Pasternack</td>
<td>27</td>
</tr>
<tr>
<td>Pasternack</td>
<td>C4</td>
</tr>
<tr>
<td>PolyPhaser</td>
<td>15</td>
</tr>
<tr>
<td>Pulsar Microwave</td>
<td>20</td>
</tr>
<tr>
<td>Satellink</td>
<td>43</td>
</tr>
<tr>
<td>Sector Microwave</td>
<td>43</td>
</tr>
<tr>
<td>SGMC Microwave</td>
<td>C3</td>
</tr>
<tr>
<td>Temwell</td>
<td>18</td>
</tr>
<tr>
<td>Wenteq Microwave</td>
<td>43</td>
</tr>
</tbody>
</table>

The ad index is provided as an additional service by the publisher, who assumes no responsibility for errors or omissions.

Find Our Advertisers’ Web Sites Using HFELINK™

1. Go to our company information Web site: www.HFELink.com, or
2. From www.highfrequencyelectronics.com, click on the HFELink reminder on the home page
3. Companies in our current issue are listed, or you can choose one of our recent issues
4. Find the company you want ... and just click!
5. Or ... view our Online Edition and simply click on any ad!

HIGH FREQUENCY ELECTRONICS

PUBLISHER
Scott Spencer
Tel: 603-759-1840
scott@highfrequencyelectronics.com

ADVERTISING SALES—NEW ENGLAND
Stuart Dale
508-855-6902
stuart@highfrequencyelectronics.com

ADVERTISING SALES — EAST
Gary Rhodes
Vice President, Sales
Tel: 631-274-9530
grhodes@highfrequencyelectronics.com

ADVERTISING SALES — CENTRAL
Gary Rhodes
Vice President, Sales
Tel: 631-274-9530
grhodes@highfrequencyelectronics.com

ADVERTISING SALES — WEST
Tim Burkhard
Associate Publisher
Tel: 707-696-2162
tim@highfrequencyelectronics.com

ADVERTISING SALES—SOUTHWEST
Jeff Victor
Tel: 224-436-8044
jeff@highfrequencyelectronics.com

ADVERTISING SALES — NEW ACCOUNTS & PRODUCT SHOWCASE
Joanne Frangides
Tel: 201-666-6698
joanne@highfrequencyelectronics.com

U.K. AND EUROPE
Sam Baird
Tel: +44 1883 715 697
sam@highfrequencyelectronics.com

High Frequency Electronics (USPS 024-316) is published monthly by Summit Technical Media, LLC, 3 Hawk Dr., Bedford, NH 03110. Vol. 18 No. 12 December 2019. Periodicals Postage Paid at Manchester, NH and at additional mailing offices.

POSTMASTER: Send address corrections to High Frequency Electronics, PO Box 10621, Bedford, NH 03110-0621.

Subscriptions are free to qualified technical and management personnel involved in the design, manufacture and distribution of electronic equipment and systems at high frequencies. Copyright © 2019 Summit Technical Media, LLC
QUALITY, PERFORMANCE AND RELIABILITY IN PRECISION COAXIAL CONNECTORS

EDGE LAUNCH CONNECTORS
BETWEEN SERIES ADAPTERS
BULKHEAD & PANEL ADAPTERS
IN SERIES ADAPTERS
CABLE CONNECTORS
CUSTOM DESIGNS

ADAPTERS · CABLE CONNECTORS · RECEPTACLES · CUSTOM DESIGNS

Including These Connector Series

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85mm</td>
<td>DC-65 GHz</td>
</tr>
<tr>
<td>2.4mm</td>
<td>DC-50 GHz</td>
</tr>
<tr>
<td>2.92mm</td>
<td>DC-40 GHz</td>
</tr>
<tr>
<td>3.5mm</td>
<td>DC-34 GHz</td>
</tr>
<tr>
<td>7mm</td>
<td>SSMA</td>
</tr>
<tr>
<td></td>
<td>DC-18 GHz</td>
</tr>
<tr>
<td></td>
<td>DC-40 GHz</td>
</tr>
</tbody>
</table>

ISO 9001:2008

SGMC Microwave — The name to count on for Quality, Performance and Reliability! Please contact us today by Phone, Fax or Email.

Manufacturer of Precision Coaxial Connectors
620 Atlantis Road, Melbourne, FL 32904
Phone: 321-409-0509 Fax: 321-409-0510
sales@sgmcmicrowave.com
www.sgmcmicrowave.com

Get info at www.HFeLink.com
You Engineer the Future.
We’ll Supply the Components... Today!

Armed with the world’s largest selection of in-stock, ready to ship RF components, and the brains to back them up, Pasternack Applications Engineers stand ready to troubleshoot your technical issues and think creatively to deliver solutions for all your RF project needs. Whether you’ve hit a design snag, you’re looking for a hard to find part or simply need it by tomorrow, our Applications Engineers are at your service. Call or visit us at pasternack.com to learn more.

866.727.8376
Pasternack.com