How Match Affects Power Measurements

Designing Power Amplifiers Using Maximum-Efficiency Lines and Constant Power Contours

IMS Product Spotlight

IMS Show Issue

Ideas for Today’s Engineers: Analog · Digital · RF · Microwave · MM-Wave · Lightwave
C.W. SWIFT & Associates, Inc.

C.W. SWIFT & Associates distributes our extensive inventory of SGMC Microwave’s quality products ... OFF THE SHELF!

SGMC Microwave Components are in Stock — Call Today for a Quote!

ADAPTERS • CABLE CONNECTORS • RECEPTACLES • CUSTOM DESIGNS

Including These Connector Series

<table>
<thead>
<tr>
<th>Connector Series</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85mm</td>
<td>DC-65 GHz</td>
</tr>
<tr>
<td>2.92mm</td>
<td>DC-40 GHz</td>
</tr>
<tr>
<td>7mm</td>
<td>DC-18 GHz</td>
</tr>
<tr>
<td>2.4mm</td>
<td>DC-50 GHz</td>
</tr>
<tr>
<td>3.5mm</td>
<td>DC-34 GHz</td>
</tr>
<tr>
<td>SSMA</td>
<td>DC-40 GHz</td>
</tr>
</tbody>
</table>

ISO 9001:2008

C.W. SWIFT & Associates, Inc.
15216 Burbank Blvd., Van Nuys, CA 91411
Tel: 800-642-7692 or 818-989-1133 or Fax: 818-989-4784
sales@cwswift.com •www.cwswift.com

CLOSED EVERY ST. PATRICK’S DAY!
Performance That Powers Every Mission

RF/Microwave, electromagnetic & security solutions delivering value-added integration

Join Us: IMS Show, June 4 - 6
Booth 442 for a live demo | MicroApps Theater: Wednesday, June 5 at 9:45 am
How Does Match Affect My Power Measurement?

By Orwill Hawkins

When power sensors are designed, attempts are made to produce the lowest VSWR (SWR) so that the user will have the best match when using it. However, match is never perfect because no device, including any power sensor, has a perfect SWR. For this reason, two power sensors of equal quality and calibration will read differently in a user’s system. In this brief, we’ll take a look at the reasons for this along with ways to achieve the best power measurements.

As a result of manufacturing limits, part and component variations, line lengths and detector properties, the VSWR of any power sensor is not perfect and varies dramatically over frequency. Two high quality, high performance power sensors will exhibit different VSWR characteristics at different frequencies. Figure 1, a chart from a LadyBug LB5940A Power Sensor data sheet, shows the specifications and typical data for a production run of power sensors. In the data sheet, the company also provides a table with limit (red line in Figure 1) and typical data for several frequency ranges to make uncertainty calculations easier for users. It is also apparent that as the frequency increases, VSWR increases making it very important to understand match when working with higher frequencies.

When comparing first-quality power sensors, you might notice that each one could exhibit a better VSWR than the other at some frequencies, even though in total they are similar. For example, at 1 GHz, the LadyBug LB5918A sensor has a limit specification of 1.13, while the Keysight™ U2000 is 1.15; at 15 GHz, both limit specifications are identical. Each one will have a frequency where it has a slightly better match. You can expect an accurate measurement from either of these sensors; however, you can be sure that the actual VSWR of each sensor will not be the same. The different VSWR results in different sensor-to-DUT mismatch and slightly different power readings. Further, when phase is considered, power reading variations can exceed 0.1 to 0.2 dB. This sometimes leads to confusion. Next, we will look at it in more detail.
Precision High Frequency Adapters

Distributed by Microwave Components
A Delta Channel Partner
(888) 591-4455
www.microwavecomponentsinc.com
admin@microwavecomponentsinc.com

DISTRIBUTED BY:
MICROWAVE COMPONENTS LLC
An ADI Company
2: Feature Article
How Does Match Affect My Power Measurement?
By Orwill Hawkins

When power sensors are designed, attempts are made to produce the lowest VSWR (SWR) so that the user will have the best match when using it. However, match is never perfect because no device, including any power sensor, has a perfect SWR. For this reason, two power sensors of equal quality and calibration will read differently in a user's system. In this brief, we'll take a look at the reasons for this along with ways to achieve the best power measurements.

10: Feature Article
Designing Power Amplifiers Using Maximum-Efficiency Lines and Constant Power Contours
By Ivan Boshnakov, Teledyne Defence & Space, Pieter Abrie, Ampsa Inc.; and Malcolm Edwards, AWR Group, NI.

This article presents an effective design approach for high-power and high-efficiency RF and microwave power amplifiers (PAs) based on a novel design method using the concept of maximum-efficiency lines, combined with control of the harmonic load impedances. The concept springs from first examining two previously reported design methods in which compact nonlinear transistor models were used to perform simulated load pull for the fundamental, second, and third harmonics.
Our Re-Flex™ Cables Really Have the Competition Bent Out of Shape...

...Because It’s Cool to Be RE-FLEXible

IW’s Re-Flex Cables were designed to offer a highly flexible alternative to standard semi-rigid & conformable cables. IW’s unique laminate dielectric, combined with a tin/alloy plated outer braid provide a double shielded, low loss, re-formable cable that eliminates the failure mode of traditional semi-rigid & conformable cables. Industry standard line sizes provide a range of interconnect options including SMA, TNC, N-type, 3.5mm, 2.92mm, 1.85mm, GPO™ & GPPO™, with standard length SMA male/male assemblies available from 2”, in stock.

<table>
<thead>
<tr>
<th>Impedance:</th>
<th>50 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time delay:</td>
<td>1.4 ns/ft</td>
</tr>
<tr>
<td>Cut off frequency:</td>
<td>62 GHz for RF 085 34 GHz for RF 141</td>
</tr>
<tr>
<td>RF leakage:</td>
<td>Equivalent to semi-rigid cable</td>
</tr>
<tr>
<td>Temp range:</td>
<td>-55°C to 165°C</td>
</tr>
<tr>
<td>Bend radius:</td>
<td>1/16 inch for RF 085 1/8 inch for RF 141</td>
</tr>
</tbody>
</table>

Max RF Power 20˚C at Sea Level

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>RF .141</th>
<th>RF .085</th>
</tr>
</thead>
<tbody>
<tr>
<td>580</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>270</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>

Attenuation in dB/ft

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>RF .141</th>
<th>RF .085</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>

Call us today with your project specs and we’ll show you the most reliable way to get connected in the industry.

We’re how the microwave industry gets connected!
IMS2019 General Chairs’ Welcome

Boston and the local steering committee are pleased to welcome the microwave world to the 2019 International Microwave Week, featuring the Radio Frequency Integrated Circuit (RFIC) Symposium, the International Microwave Symposium (IMS), the 5G Summit, and the ARFTG Microwave Measurements Conference. The technical presentations and industry exhibits will be held at the Boston Convention and Exhibition Center (BCEC). The social and networking events and opportunities will take place throughout the revitalized Seaport District, home to many museums, shops, restaurants, and nightclubs.

Boston has a rich microwave heritage that continues through today. The Radiation Laboratory run by the Massachusetts Institute of Technology (MIT) during the 1940s made seminal contributions to the emerging microwave engineering field. Much of this knowledge was transferred to surrounding industry and universities in the 1950s. More recently, the local steering committee takes pride in balancing the traditions of the IMS with innovative twists to create a great experience for the technical and industry exhibition attendees. This year’s symposium continues this philosophy with new features that include:

A **significantly enhanced mobile app** with the goal of making this the primary interface to the International Microwave Week.

Focus on start-ups and young professionals through the introduction of a Start-up Pavilion in the Industry Exhibition along with an IP 101 information session, start-up panel session, and Next Top Start-up contest. Young professionals will have a lounge specifically to meet and exchange ideas and experiences and a reception at Coppersmith on Tuesday evening.

Sixty Second Presentations where interactive forum authors can pre-record an overview of their papers, allowing attendees to get a preview of the paper’s content and target the papers of most interest to their work.

Interactive Panel Sessions with real-time audience participation via the Slido App

Sweet Treats Tuesday to welcome the attendees to the industry exhibit. Dessert items will be provided during the lunch break, encouraging everyone to come to the exhibit floor for a treat and begin interactions with the industry exhibitors.

The overall format of the International Microwave Week remains the same. The RFIC Symposium begins on Sunday with workshops and concludes Tuesday morning. The 5G Summit, again co-sponsored by MTT-S and ComSoc, picks up on Tuesday afternoon and concludes Tuesday evening with a panel session. The IMS will run Sunday through Friday with the Industry Exhibition taking place Tuesday through Thursday. The ARFTG
Microwave Measurements Conference will also begin on Sunday with jointly sponsored workshops on Sunday and Monday, and the technical sessions on Thursday and Friday. In all, there will be over 9,000 attendees from around the world participating in the technical sessions, workshops, and the Industry Exhibition. There will be more than 900 exhibitor booths showcasing the latest developments in microwave hardware, software, components, and systems.

The International Microwave Symposium will begin with workshops and short courses on Sunday and Monday. The opening plenary session will be held Monday evening featuring a presentation on “The Mind-Body Problem for Intelligent RF,” by Dr. William Chappell, the Director of the Microsystems Technology Office at the Defense Advanced Research Projects Agency (DARPA). This will be followed by the Welcome Reception at the Seaport World Trade Center. The IMS technical sessions will run Tuesday through Thursday, with the closing session on Thursday afternoon featuring Dr. Dina Katabi from MIT describing her work at the intersection of wireless microwave systems and machine learning focused on biological applications. The closing celebration reception will be held immediately after. The symposium will conclude with additional workshops held on Friday.

The Industry Exhibition is another center piece of the International Microwave Week and will take place on Tuesday through Thursday. In addition to the Sweet Treats Tuesday, the Industry-hosted reception will be held Wednesday late afternoon. The exhibition floor will be home to the MicroApps Theater, the Societies’ Pavilion, and the new Start-up Pavilion. The IMS schedule again will include exhibition-only time on Wednesday afternoon to ensure all attendees have an opportunity to interact with and learn about the latest products from the microwave industry exhibitors.

The evenings throughout the week will be filled with social and networking opportunities, both organized and informal, so that you can catch-up with your colleagues from across the globe. The RFIC and IMS Plenary Sessions and Welcome Receptions will be held on their respective Sunday and Monday evenings. Tuesday evening will have the young professionals’ social event and the amateur radio social. Wednesday evening will have the Women in Microwaves Reception and the Awards Banquet.

Welcome to Boston for IMS2019!

Powerful Payload & RF Link Emulator

- Link emulation: Delay, Doppler, AWGN, Phase shift
- Real time control for Arial Vehicle (UAV) testing
- Payload: MUX, Compression, Phase noise, Group delay
- Multipath: 12 paths per channel
- Up to sixteen synchronous channels with correlation

DBm Corp, Inc
32A Spruce Street • Oakland, NJ 07436
Tel (201) 677-0008 • Fax (201) 677-9444
email: info@dbmcorp.com • www.dbmcorp.com

Get info at www.HFeLink.com
Consider a microwave source set to 1.00 dBm, connected to a power sensor. If the calibration and match of the source and sensor were perfect, you would set and read 1.00 dBm. In reality, sources are calibrated with a 50 ohm load, however the actual output impedance is not 50 ohms. This is due to the source’s broad driver requirements, driver technology limitations, and part variations. In fact the VSWR is probably very different than 50 ohms, resulting in a high VSWR. A review of the published VSWR specifications for 4 different current model, top-brand sources was 1.5, 1.6, 1.9 and 1.6 at 3 GHz.

Even though a power sensor’s typical VSWR is much lower than that of a source, the significant source reflection can result in an error that should be accounted for. This error is a result of a small portion of the power being reflected back from the sensor to the source, a portion of which is then re-reflected by the source and combined into the measurement (See Figure 2). In addition to the amplitude, it is important to understand how the reflections’ phase can affect your measurement. If the reflected portion is in phase with the incident power, the measurement will be increased; if the reflected portion is 180 degrees out of phase, the measurement will be reduced; there will be frequencies at which the phase is just right and a perfect result will be produced. The reflection repeats, becoming smaller each time. The total mismatch determines the magnitude of reflected power. In this case it is nice to think of reflection coefficient rather than VSWR, even though they are functionally equivalent. The source could be any device generating power for measurement and it is important to know its VSWR.

To calculate the potential error, you must know the reflection coefficient (ρ) of the sensor and the source (DUT - device under test). The sensor’s ρ can easily be calculated from its specifications. All calculations are done with linear data. We’ll calculate here based on a VSWR of 1.10 to keep things simple. For this example, we will consider these to be limit specifications (worst case numbers).

\[ρ_{\text{sens}} = \frac{(\text{VSWR}-1)}{(\text{VSWR}+1)} \]
\[ρ_{\text{sens}} = \frac{(1.10-1)}{(1.10+1)} = 0.048 = 4.8\% \]

This worst case number indicates that 4.8% of the power could be reflected back. During calibration, match is mitigated in the applied power system so that the sensor can be calibrated correctly. All power is measured, including that which was reflected back.

Now let’s do the same for a source. Here we will use 1.3 VSWR which is something that we might expect to see.

\[ρ_{\text{DUT}} = \frac{(\text{VSWR}-1)}{(\text{VSWR}+1)} \]
\[ρ_{\text{DUT}} = \frac{(1.3-1)}{(1.3+1)} = 0.1304 = 1.304\% \]

If the above described source and sensor are directly connected there will be interaction due to the reflected power. Let’s calculate the mismatch interaction and total potential error due to mismatch using the formula:

\[M_m = \left(1 + (ρ_{\text{sens}} \cdot ρ_{\text{DUT}})^2\right) - 1 \]
\[M_m = \left(1 + (0.048 \cdot 0.1304)^2\right) - 1 = 0.0126 = 1.26\% \]

The potential error in measurement due to mismatch is 1.26%. Since limit values (worst case specifications) were used, the error would be something less than this. If we had located and used typical numbers, we would have had a smaller number that was probably more accurate instead of this worst case result.

If we now consider a different power sensor which has a similar but not exact VSWR we will see slightly different results even if the calibrations are both perfect. This second sensor has a VSWR of 1.11, just slightly different than the first.

\[ρ_{\text{sens}} = \frac{(\text{VSWR}-1)}{(\text{VSWR}+1)} \]
\[ρ_{\text{sens}} = \frac{(1.11-1)}{(1.11+1)} = 0.052 = 5.2\% \]

The worst case number for the second sensor shows that 5.2% of the power could be reflected back from the sensor.

Since there is no change in the source, we can use \(ρ_{\text{DUT}} \) of 0.1304 and calculate the combined result as:

\[M_m = \left(1 + (ρ_{\text{sens}} \cdot ρ_{\text{DUT}})^2\right) - 1 \]
\[M_m = \left(1 + (0.052 \cdot 0.1304)^2\right) - 1 = 0.0136 = 1.36\% \]

The potential error in this measurement due to mismatch is 1.36%, very close to the former 1.26%. However you cannot expect both sensors to measure exactly the same even though both are good measurements.

As can be seen, even if you have the very highest level of calibration, match can cause significant measurement uncertainty. Mismatch is generally considered the most significant part of total measurement uncertainty.

In cases where high source mismatch is present, uncertainty can be reduced by adding an attenuator to the system. If, for example, a 3 dB attenuator is inserted between the source and sensor, the returned power from the sensor to the DUT is reduced, then the resultant reflection back from the DUT is again reduced, minimizing the error. Additional reflections are added on each
Lowest Noise in the Industry

Wide Band, Fast Tune Frequency Synthesizers

Industry Leading Performance!
The LUXYN™ MLVS-Series Frequency Synthesizers from Micro Lambda Wireless is one of the fastest and quietest synthesizers on the market. Standard frequency models are available covering 500 MHz to 20 GHz and 500 MHz to 10 GHz with options to cover down to 50 MHz and up to 21 GHz in a single unit.

With the lowest noise in the industry, (phase noise at 5 GHz is -130 dBc/Hz @ 10 kHz offset and at 10 GHz is -125 dBc/Hz @ 10 kHz offset), these synthesizers are designed for low noise & fast tune applications such as Receiving Systems, Frequency Converters and Test & Measurement Equipment.

For more information contact Micro Lambda Wireless.

www.microlambdawireless.com

US patents #9,793,904 B1, #9,734,099 B1
Designing Power Amplifiers Using Maximum-Efficiency Lines and Constant Power Contours

By Ivan Boshnakov, Teledyne Defence & Space, Pieter Abrie, Ampsa Inc.; and Malcolm Edwards, AWR Group, NI.

Introduction

This article presents an effective design approach for high-power and high-efficiency RF and microwave power amplifiers (PAs) based on a novel design method using the concept of maximum-efficiency lines, combined with control of the harmonic load impedances.

The concept springs from first examining two previously reported design methods in which compact nonlinear transistor models were used to perform simulated load pull for the fundamental, second, and third harmonics. This evolves into investigating load-pull results when the harmonics impedances at the intrinsic generator of the transistor model are pre-defined and from there to the concept of maximum-efficiency lines and how to define them using nonlinear simulated load pull.

The Cripps method, extended by Abrie’s “power parameters,” which provides the load-pull power contours and the maximum efficiency lines, is also discussed.

Designing Exclusively From Load-Pull Data

The initial compact nonlinear model used in [1] did not have the intrinsic channel model exposed. Therefore, the intrinsic voltages and currents could not be observed directly. Without this capability it was impossible to establish the fundamental-frequency and harmonic impedances required for the power and efficiency targeted over the bandwidth of interest in a straightforward manner [3, 4, 5, 6]. Load-pull simulations were therefore required in order to obtain the optimum load impedances (at the available device model’s reference plane) at a number of passband frequencies.

The selected target areas in Figure 1 were used to synthesize the output matching network. The input matching network was designed to match the input impedance of the transistor as calculated by using the S-parameters of the transistor with the load network in place.

The matching circuit synthesis was performed using a real-frequency synthesis technique to synthesize matching networks to solve the fundamental-frequency, second, and third-harmonic problems defined [9].

Figure 2 compares the simulated performance and the measured performance of the designed amplifier. The simulated and measured performances are in good agreement.

Model With Intrinsic Current Generator

A different design approach was presented in [2] to design a 1.8 – 2-GHz amplifier stage. The nonlinear transistor model developed by Modelithics for the 30 W T2G6003028-FL Qorvo gallium nitride (GaN) high-electron-mobility transistor (HEMT) was used to demonstrate this...
Looking for the perfect high-Q inductor for impedance matching in RF/microwave antenna circuits? This kit has it!

Coilcraft 0402DC Series wirewound chip inductors offer the industry’s highest Q factors in an 0402 (1005) size for super low loss in high frequency circuits. And with 112 values from 0.8 to 120 nH, including **0.1 nH increments from 2.8 nH to 10 nH**, you’ll have exactly what you need for all your RF and Microwave applications.

The 0402DC also features wirewound construction for extremely high self resonance – up to 28.8 GHz – and offers DCR as low as 25 mΩ, significantly lower than other inductors this size.

Equip your lab with the ultimate impedance matching resource. Our C472-2 Designer’s Kit has 20 samples of all 112 values! Purchase one online at www.coilcraft.com/0402DC.
new approach. Unlike the model used in the first design approach, this model enables access to the intrinsic device-channel voltage and current, crucial in this second design methodology.

Figure 3 shows the internal schematic of the nonlinear transistor model. The voltages and currents are measured across the intrinsic current generator and the impedance can be calculated and is plotted in the graph on the right. The output tuner of the load-pull setup controls the fundamental-frequency terminations along with the second- and third-harmonic terminations.

The second- and third-harmonic load reflection coefficients are pre-tuned for the selected class of operation (Class F in this case), before performing the fundamental-frequency load-pull simulations using Microwave Office circuit simulation software. A near short for the second harmonic and near open for the third harmonic are required for Class-F operation.

The fundamental-frequency reflection coefficient at the output was tuned for maximum power, Figure 3. The input tuner is used to achieve maximum gain at the fundamental frequency. The harmonics impedances at the input were set to 50 ohms in this design.

With the second- and third-harmonic load impedances pre-set for Class-F operation, the fundamental-frequency contours for maximum power and maximum efficiency were generated, as shown in Figure 4 (left graph). These contours were used to define a circular target area (green circle) for the fundamental-frequency load terminations.

The fundamental-frequency termination was set at the center of the circle targeted and load-pull contours (constant power and constant efficiency) for the second and third harmonics were then generated. The second-harmonic contours were generated with the third-har-
Multi-Octave Bandwidths
Noise Figure as low as 0.7 dB
IP3 up to +47 dBm
monic impedance fixed to an open circuit, while the second-harmonic impedance was fixed to be a short circuit when the third-harmonic contours were generated. Useful areas of the Smith chart were then selected for the two harmonics. The second-harmonic load-pull contours are shown to the right in Figure 4.

The matching networks were synthesized as before [2]. The manufactured amplifier (1.8 - 2.2 GHz) with
Engineers’ RF Surge Protection Source for Total Network Reliability.

Whether your coaxial application is at the tower top, GPS or in the base station, RF products designed and manufactured by PolyPhaser set the standard for the industry.

- **Superior Protection**
 PolyPhaser’s superior RF designs and platforms include system level protection, DC Pass, DC Block, Bias-T and Ultra-Low PIM products.

- **Patented Technology**
 Our patented designs are engineered for low voltage let-through and superior RF integrity, offering the industry’s best performing surge arrestors.

- **Guaranteed Performance**
 PolyPhaser’s field-tested product platform, is backed by a ten-year warranty and can be found in mission-critical communication applications in more than 160 countries.

When RF network reliability is a requirement, the only choice is PolyPhaser! Learn more at PolyPhaser.com or call us 208 772 8515.
measured results is shown in Figure 5, indicating good agreement to simulation. The matching networks were synthesized as before [2]. The manufactured amplifier (1.8 - 2.2 GHz) with measured results is shown in Figure 5, indicating good agreement to simulation.

Load Pull With Pre-Defined Harmonic Impedances

Based on these results, load-pull analysis with pre-defined harmonic impedances was explored further. The first design method using the Wolfspeed 25-W GaN CGH40025F was used again for this investigation. Figure 6 shows a schematic with a load tuner and a new nonlinear model for the transistor, which provides the ability to measure the voltages and currents across the intrinsic generator. Load-pull simulations were performed with the harmonic impedances (reactances) pre-tuned for Class-B, Class-F, and inverse Class-F operation.

Figure 7 shows the 2.5-GHz power contours obtained at 5-dB gain compression. The maximum output power at the same compression depth are similar for the three classes of operation (44.7 dBm, 45 dBm, 45.3 dBm). The differences in the efficiency are significant (57.7%, 67.7%, 75.2%). The efficiency is the lowest for Class-B and the highest for inverse Class-F. The intrinsic fundamental-frequency impedance terminations for maximum power for each class are close to the values predicted by the theoretical expressions for the pre-hard-clipped situation where the RF current and voltage just touch the limiting boundaries of the I/V-curves (knee voltage, maximum current and breakdown voltage) [3, 4, 5].

The drain efficiency load-pull contours for the three classes of operation were also generated, Figure 8. The efficiency is again increasing from Class-B to Class-F to inverse Class-F. In the graph on the right, power and efficiency contours are superimposed.

Figure 8: Drain efficiency contours for class-B, class-F and inverse class-F operation (left) and superimposed output power and drain efficiency contours are shown.

Impact of Harmonic Terminations

Figure 8 shows a wide area where acceptable tradeoffs between power and efficiency could be achieved, but the area is strongly dependent on the harmonic impedances.

Two additional power contours are shown in Figure 9. The associated second-harmonic and third-harmonic reflection coefficients were intentionally de-tuned to -90° (green trace) and +90° (pink trace), thereby stretching the useful area further.

The peak-power point for Class-B is close to one of the contours added. Comparing the performance with the
The Right RF Parts. Right Away.

We're RF On Demand, with over one million RF and microwave components in stock and ready to ship. You can count on us to stock the RF parts you need and reliably ship them when you need them. Add Fairview Microwave to your team and consider it done.

Fairviewmicrowave.com
1.800.715.4396

an INFINIT® company
same fundamental-frequency termination, but different harmonic terminations, shows the power and efficiency for Class-B operation is 44.7 dBm and 57.7% and degraded to 44.2 dBm and 49% if the harmonics are de-tuned to 90°. This extreme case illustrates that the performance can degrade substantially if the harmonic impedances are off-target.

3D Load-Pull Simulations

The importance of the effect of the harmonics terminations is illustrated well in [3] and the graphs in Figure 10. 3D and 2D plots of the output power and drain efficiency as a function of second- and third- harmonic reactance values depicts the design sensitivity to harmonic loads based on how the drain-source capacitance is modelled (linear vs. nonlinear). The fundamental-frequency termination, but different harmonic terminations, shows the power and efficiency for Class-B operation is 44.7 dBm and 57.7% and degraded to 44.2 dBm and 49% if the harmonics are de-tuned to 90°. This extreme case illustrates that the performance can degrade substantially if the harmonic impedances are off-target.

3D Load-Pull Simulations

The importance of the effect of the harmonics terminations is illustrated well in [3] and the graphs in Figure 10. 3D and 2D plots of the output power and drain efficiency as a function of second- and third- harmonic reactance values depicts the design sensitivity to harmonic loads based on how the drain-source capacitance is modelled (linear vs. nonlinear). The fundamental-frequency termination, but different harmonic terminations, shows the power and efficiency for Class-B operation is 44.7 dBm and 57.7% and degraded to 44.2 dBm and 49% if the harmonics are de-tuned to 90°. This extreme case illustrates that the performance can degrade substantially if the harmonic impedances are off-target.
Planar Monolithics Industries, Inc.

Industry Leader in IF Log Video Amplifiers/SDLVAs

PMI offers a variety of IF Log Video Amplifiers/SDLVAs covering the DC to 4 GHz frequency range. PMI's IF Log Video Amplifiers/SDLVAs offer high dynamic range along with excellent temperature stability. Most IF Log Video Amplifiers/SDLVAs provide a limited IF output. PMI offers many standard models with various options that are available at: https://www.pmi-rf.com/categories/dlvas-erdlvas-sdlvas

<table>
<thead>
<tr>
<th>PMI Model No.</th>
<th>Frequency Range (MHz)</th>
<th>TSS</th>
<th>Dynamic Range Log (dBm)</th>
<th>Size (Inches)</th>
<th>Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLVA-7M-80-SFF</td>
<td>5.5 - 8.5</td>
<td>-80 dBm</td>
<td>25</td>
<td>-70 to 0</td>
<td>2.2” x 1.5” x 0.55”</td>
</tr>
<tr>
<td>DLVA-70M-80-12V</td>
<td>50 - 90</td>
<td>-80 dBm</td>
<td>25</td>
<td>-80 to 0</td>
<td>3.5” x 1.5” x 0.47”</td>
</tr>
<tr>
<td>SDLVA-315M362M-65-CD-1</td>
<td>315 - 362</td>
<td>-80 dBm</td>
<td>50</td>
<td>-65 to 0</td>
<td>3.75” x 1.5” x 0.5”</td>
</tr>
<tr>
<td>SDLVA-100M3G-70-MAH</td>
<td>100 - 3000</td>
<td>-70 dBm</td>
<td>10</td>
<td>-60 to +5</td>
<td>2.3” x 2.2” x 0.36”</td>
</tr>
<tr>
<td>SDLVA-0120-70-0225</td>
<td>200 - 2500</td>
<td>-65 dBm</td>
<td>25</td>
<td>-65 to +5</td>
<td>3.75” x 1.5” x 0.5”</td>
</tr>
<tr>
<td>GMDA-D1007</td>
<td>500 - 2000</td>
<td>-65 dBm</td>
<td>25</td>
<td>-60 to +7</td>
<td>3.5” x 1.5” x 0.5”</td>
</tr>
<tr>
<td>HADA-D2001</td>
<td>500 - 2000</td>
<td>-44 dBm</td>
<td>50</td>
<td>-40 to 0</td>
<td>2.5” x 1.5” x 0.44”</td>
</tr>
<tr>
<td>SDLVA-0R5G4G-70dB-100R</td>
<td>500 - 4000</td>
<td>-73 dBm</td>
<td>25</td>
<td>-70 to 0</td>
<td>3.2” x 1.8” x 0.4”</td>
</tr>
<tr>
<td>SDLVA-0R71R3-75-CD-1</td>
<td>700 - 1300</td>
<td>-70 dBm</td>
<td>40</td>
<td>-70 to 0</td>
<td>3.75” x 1.5” x 0.5”</td>
</tr>
</tbody>
</table>
Figure 6 • A new model for the 25 W GaN transistor with access to intrinsic generator is embedded in a load-pull simulation setup.
SUPER ULTRA WIDEBAND AMPLIFIERS

up to +27 dBm output... **0.1 to 40 GHz**

Ultra wide coverage and super flat gain make our ZVA family ideal for ECM, instrumentation, and test systems. With output power up to 0.5 Watts, they’re simply some of the most usable amplifiers you’ll find, for a wide range of applications and architectures!

All of our ZVA models are unconditionally stable, ruggedly constructed, and able to withstand open or short circuits at full output. For more details, from data sheets to environmental ratings, pricing, and real-time availability, just go to minicircuits.com!

All models IN STOCK!

RoHS compliant

Electrical Specifications (-55 to +85°C base plate temperature)

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency (GHz)</th>
<th>Gain (dB)</th>
<th>P1dB (dBm)</th>
<th>IP3 (dBm)</th>
<th>NF (dB)</th>
<th>Price $ (Qty. 1-9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZVA-183WX+</td>
<td>0.1-18</td>
<td>28±2</td>
<td>27</td>
<td>35</td>
<td>3.0</td>
<td>1479.95</td>
</tr>
<tr>
<td>ZVA-183GX+</td>
<td>0.5-18</td>
<td>27±2</td>
<td>27</td>
<td>36</td>
<td>3.0</td>
<td>1479.95</td>
</tr>
<tr>
<td>ZVA-183X+</td>
<td>0.7-18</td>
<td>26±1</td>
<td>24</td>
<td>33</td>
<td>3.0</td>
<td>935.00</td>
</tr>
<tr>
<td>NEW! ZVA-203GX+</td>
<td>2.0-20</td>
<td>29±1</td>
<td>17</td>
<td>27.5</td>
<td>3.0</td>
<td>1295.00</td>
</tr>
<tr>
<td>ZVA-213X+</td>
<td>0.8-21</td>
<td>26±2</td>
<td>24</td>
<td>33</td>
<td>3.0</td>
<td>1039.95</td>
</tr>
<tr>
<td>ZVA-213UWX+</td>
<td>0.1-20</td>
<td>15±1</td>
<td>15</td>
<td>30</td>
<td>3.0</td>
<td>1795.00</td>
</tr>
<tr>
<td>NEW! ZVA-403GX+</td>
<td>0.005-40</td>
<td>11±1.5</td>
<td>11</td>
<td>23</td>
<td>4.0</td>
<td>1995.00</td>
</tr>
</tbody>
</table>

*Heat sink must be provided to limit base plate temperature. To order with heat sink, remove “X” from model number and add $50 to price.

Wideband Performance

- ZVA-183WX+
- ZVA-183GX+
- ZVA-183X+
- ZVA-203GX+
- ZVA-213X+
- ZVA-213UWX+
- ZVA-403GX+
The fundamental-frequency impedance is pre-defined for maximum power from a 10-W GaN HEMT device operating at 2.45 GHz, while the reactance values at the second- and the third-harmonic frequencies are swept. The graphs on the left and in the center show power and efficiency versus the second- and third-harmonic reflection-coefficient angle, while the graph to the right shows merged two-dimensional cross-sections for a chosen performance target (power higher than 10-W power and efficiency higher than 80%).
These graphs show a very wide area of acceptable reactance values for the harmonic terminations and very deep poor-performance valleys, which should be avoided.

The nonlinear transistor models used in some scientific papers are more advanced than the models provided by many transistor manufacturers. In [3] the output capacitor \((C_{ds})\) of the transistor is modelled as nonlinear and it is shown that this substantially widens the useful impedance area for high-power and high-efficiency performance. The nonlinear models provided by most transistor manufacturers are, however, simplified and the output capacitors have fixed values.

Furthermore, commercial models are sometimes not validated even up to the third harmonic of the upper end of the useful fundamental-frequency range. To emphasize the importance of modelling \(C_{ds}\) as nonlinear, the two graphs shown in Figure 11 [3] compare the results of load-pull simulations with \(C_{ds}\) constant and \(C_{ds}\) nonlinear. Modeling \(C_{ds}\) as constant leads to more restrictive requirements for the harmonics impedances.

Using Power Parameters, Matching Networks Synthesis, and Maximum-Efficiency Lines

Steve Cripps published a method of plotting load-pull power contours for a transistor stage operated in Class-A mode [6, 7]. The simple closed-form equations and a cascade LC model for the output of the transistor enabled reasonably accurate plotting of the constant-power contours. Cripps also showed that the elliptical shape of the constant-power contours was caused by the hard clipping of the intrinsic voltage and/or current at the I/V-plane boundaries and that they are derived by intersecting constant resistance and constant admittance circles. The constant resistance circle segment is where the intrinsic current clips, while the voltage clips on the constant admittance circle segment.

The Cripps load-line concepts were adopted and extended in the specialized commercially available software tool Amplifier Design Wizard (ADW) [9]. The first extension was to use four arbitrary lines to define the load-line boundaries instead of assuming a rectangular load-line area. The problem of finding the external load line associated with the required intrinsic load line was solved by using the power parameters introduced by Abrie [8]. The intrinsic voltages and the intrinsic output current were mapped to the external voltages for any arbitrary linear network. This network usually consists of the full linear model for the transistor (package included) and any network elements (arbitrary) between the transistor and the matching network. The reverse feedback of the transistor is also accounted for in this approach and external feedback is also permitted. Losses (resistors) are allowed in the transistor model, as well as the external network.

Using the complete linear transistor model and the mapping functions of the power parameters, intrinsic load
lines can be mapped directly to external load lines at any frequency of interest, with no restrictions on the transistor configuration, feedback, resistive losses, transmission lines, grounding node position, etc. The power generated by the transistor is determined by the intrinsic load line and the load-line boundaries. Constant-power contours can be generated for Class-A, Class-B, Class-AB, Class-F, and inverse Class-F operation.

Load-pull results from a harmonic-balance simulator and the ADW validate the accuracy of this method. The graph on the left in Figure 13 represents the simulated constant-power contours of an amplifier stage in Class-B operation (5 dB into gain compression). The center graph is the load-pull contours produced in the ADW for Class-B operation with pre-hard-clipped load lines. The graph on the right shows the excellent agreement between measurements.

All the points of maximum power and maximum efficiency of the load-pull contours (Figure 14), starting with the peak-power point for
25

Class-B operation, are lined up on a reasonably smooth curve. This curve will be referred to as the maximum-efficiency line. For a given class of operation, the efficiency will increase initially along the maximum-efficiency line as the power is decreased from its peak value. The class of operation can be changed when the peak-power point for that class is reached, at which point the efficiency will jump to correspond to the new class.

The maximum-efficiency points are positioned on the voltage-clipping side, which at the intrinsic generator is on the constant admittance circle segment and is the side with higher intrinsic load resistance. They are also purely resistive and hence lie on the central horizontal line of the Smith Chart. At the intrinsic reference plane, the power contours are perpendicular (vertical) to the central horizontal line of the Smith chart (contours not rotated).

When the contours are mapped from the intrinsic generator plane to the output of the transistor using the power parameters, the contours shift and tilt, as shown in Figure 15, and some dispersion is in effect, depending on the complexity of the transistor model. By plotting the maximum-efficiency points on any power contour, the designer is able to set and visualize the desired compromise point for achieving the optimum tradeoff between power and efficiency.

If a Class-B, Class-F or inverted Class-F stage is to be designed with harmonic control, the fundamental-frequency load line at each passband frequency can be set to the peak-power termination (or a scaled version of it) or can be chosen to be the optimum point on the power contour targeted, or a circular area around it.

The second- and third-harmonic impedances can be specified to be low or high, relative to the fundamental-frequency impedance (near short or near open), depending on the desired class of operation. Exact shorts, opens or harmonic reflection coefficients (continuous modes)

Figure 12 • The intrinsic load lines from the I/V plane can be mapped directly into external load lines. The power parameters are used to create constant-power contours for the external load line on the Smith chart.

Figure 13 • Comparison of constant-power contours generated using load-pull analysis of nonlinear model (left) to the output power contours generated using the linear model and power parameters (center).
High Frequency Electronics

PAs

will place very stringent demands on the external harmonic impedances and are not required.

Design Demonstration and Validation

After extracting a linear model for the transistor, the fundamental-frequency impedances were selected to be the maximum-efficiency points on the power contours targeted (points on the maximum-efficiency lines) at a number of frequencies across the bandwidth. Power levels below the peak were targeted in seeking the optimum trade-off between power and efficiency (Figure 16).

Lumped-component load networks were synthesized for different power levels and different combinations of low and high harmonic impedances. These networks were then imported into the simulator for nonlinear simulation and verification. After a few iterations the desired amplifier response was obtained and a final network of mixed microstrip transmission lines and surface-mount compo-

![Figure 13](image1.png) • The graph shows the superimposed constant-power and constant-drain efficiency contours generated in Microwave Office software.

![Figure 14](image2.png) • The ADW-derived constant-power contours at four frequencies across the passband are shown with the maximum-efficiency lines.

![Figure 15](image3.png) • ADW constant-power contours with the markers placed on the maximum drain efficiency points of the power contours.
Figure 16: Artwork view of the synthesized output impedance matching network.

Figure 17 • Comparison of amplifier maximum power, power gain, PAE, and input return loss for the initial design method (faded traces) and the new design approach.
nents was synthesized. The parasitic elements and the pads of the lumped components and discontinuities of the microstrip network are accounted for automatically during synthesis.

The final version of the synthesized network, Figure 17, was imported into the general simulator design environment for further layout detailing, along with the nonlinear model and its artwork information. Sections of the design were set up for EM simulation and harmonic-balance was used to verify the design.

The simulation results for the new design method are compared with those of the previous design method (faded traces) in Figure 18.

The new design method provides wider bandwidth (~100 MHz to both the upper and lower edges of the bandwidth) with negligible reduction of output power and efficiency.

Conclusion

The design approach in this article is based on selecting the fundamental frequency impedances on the maximum efficiency lines of the load-pull power contours. The desired harmonics impedances are also defined. Combined with the extended Cripps load pull method and real-frequency matching networks synthesis technique the approach provides an efficient (fast) design method that is no less accurate than methods that only use nonlinear transistor models and harmonic-balance simulated load-pull data.

References

1. Ivan Boshnakov, “Practical design approach of RF PA for high efficiency using simulated Load-Pull and real-world network synthesis with control of the harmonics impedances”, AWR PA Forum at EuMW, October 2014

7. Steve C. Cripps, “GaAs FET Power Amplifier Design”, Matcom, Inc., Technical Note 3.2

Applications:
Research & Development Labs
VNA Test Port Extension Cables
High Volume Production Test
Bench or Portable Test equipment
RF Module Testing

Industry leading performance, unparalleled value, and stock to 4-week lead times.

Phase stability <3.5°
Guaranteed up to 50,000 flexes
Super-sharp Sure-Grip™ knurl
Ergonomically designed Sure-Grip™ molding

When Everything is Important... the NEW Clarity™ Series is the Clear Choice
Product Highlights

Prevent Your Tech Knowledge from Becoming Obsolete

Studies reveal that within each 3-5 year period, one-half of an engineer’s technical knowledge becomes obsolete. New graduates soon discover that university education provides only the foundation of knowledge that is realistically needed to perform well in the industry. Continued education is a must for survival in today’s competitive market. Application of modern computer-aided engineering to RF and microwave circuit and system design is vital to manufacturing products with high quality and yield. Modernization of the design laboratory and production floor is critical to maintaining a competitive edge. Keep your edge by contacting Besser Associates today.

Besser Associates
besserassociates.com

YIG-Tuned Technology

For the RF and microwave designer, choices in components and instruments range from ordinary performance to the absolute best. And when it comes to oscillators, filters, and synthesizers, nothing beats MicroLambda’s YIG-tuned technology. Our YIG devices and equipment offer the biggest names in the EW, ISM, and aerospace industry the lowest phase noise and superior multi-octave tuning capability. With this technology in-hand, they’re creating the next-generation of test instruments, signal generators, spectroscopy equipment, receivers, jammers, communication systems, and more.

Micro Lambda Wireless
Booth #1104

USB, I2C & SPI Power Sensor

LadyBug Technologies’ LB5900 series patented No-Zero before use RF Power Sensors offer coverage from 9 kHz to 40 GHz. The thermally stabilized sensors do not drift or interrupt measurements to zero. The product’s broad frequency range combined with exceptional sensitivity make them ideal for satellite, radar, EMC testing along with defence applications and general testing. The sensor line offers optional SPI / I2C connectivity. This allows users to make calibrated power measurements in compact instruments and ATE systems that do not include a PC.

LadyBug Technologies LLC
Booth # 1255

Precision 2.4mm/2.92mm Adapters

SGMC Microwave introduces our 2.4mm to 2.92mm between-series precision grade NMD connectors that are designed for use with microwave applications requiring excellent performance up to 40 GHz. NMD connectors are ruggedized test-port connectors that specially designed to stabilize the test port cable during testing on many network analyzers. SGMC offers an extensive line of precision in-series adapters, between-series adapters, receptacles, and cable connectors for various semi-rigid and flexible coaxial cables. Special designs are also available upon request.

SGMC Microwave
Booth # 855
Over 40 Models from 10W to 100W

POWER AMPLIFIERS

0.1 MHz to 6 GHz

- Ultra-wide bandwidths, up to >1 decade
- Rugged designs with extensive built-in protections
- In stock for immediate shipment
FETs, MMICs, and More

AMCOM was established in December 1996 by a group of microwave designers experienced in both microwave circuit design and microwave device fabrication technology. It is located in Gaithersburg, Maryland, USA, about 20 miles northwest of Washington, DC. The company has earned a reputation as a leading edge microwave design organization that includes power FETs, MMIC power amplifiers, as well as high-power amplifier modules with RF and DC connectors that are ready to be used in microwave systems. One of our specialty products is high-power, broadband, high-efficiency power amplifiers.

AMCOM
Booth # 215

AMCOM has released a new series of compact SSPAs with:
- A built-in temperature sensor
- TTL control
- Thermal shutdown protection
- Size 2.2”(L) x 2.2”(W) x 0.65”(H)
- No negative voltage required
- Female SMA connectors
- Custom design available upon request

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq (GHz)</th>
<th>Psat (dBm)</th>
<th>Gain (dB)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM00010037MD-1H</td>
<td>0.05 – 10</td>
<td>37</td>
<td>12</td>
<td>+32</td>
</tr>
<tr>
<td>AM186242MD-3H</td>
<td>1.8 – 6.2</td>
<td>42</td>
<td>32</td>
<td>+32</td>
</tr>
<tr>
<td>AM357037MD-3H</td>
<td>3.5 – 7.0</td>
<td>38</td>
<td>24</td>
<td>+12</td>
</tr>
<tr>
<td>AM388242MD-3H</td>
<td>3.8 – 8.2</td>
<td>42</td>
<td>33</td>
<td>+32</td>
</tr>
<tr>
<td>AM559038MD-3H</td>
<td>5.5 – 9.0</td>
<td>38</td>
<td>24</td>
<td>+12</td>
</tr>
<tr>
<td>AM12516541MD-5H</td>
<td>12.5 – 16.5</td>
<td>41</td>
<td>51</td>
<td>+32</td>
</tr>
</tbody>
</table>

For more detailed information please visit: www.amcomusa.com

401 Professional Dr. info@amcomusa.com P: 301-353-8400 F: 301-353-8401
Gaithersburg, MD 20879

Get info at www.HFeLink.com
Molded Power Inductors
Coilcraft’s XGL4020 Series of high-performance, molded power inductors features the industry’s lowest DC losses and extremely low AC losses for a wide range of DC - DC converters (from hundreds kHz up to 5+ MHz). Additional performance improvements include a wider range of inductance values and improved Irms current ratings. The XGL4020 is available in twelve inductance values from 0.33 to 8.2 µH, with current ratings up to 15.2 Amps and soft saturation characteristics. It offers the lowest DC resistance currently available.

Coilcraft
Booth # 317

Test Equipment and Subsystems
dBm develops and manufactures test equipment and subsystems for the RF marketplace, including wireless telecommunications, satellite systems, and military applications. We specialize in RF link impairment emulation for terrestrial and satellite wireless systems. Our link emulation products have been used in virtually every major satellite system developed since the early 1990s. The founders of the company joined together with decades of experience in the creation of RF test equipment and in providing outstanding customer support. We are a small business that takes pride in every product we deliver.

dBm
Booth # 347
Interconnect Solutions

Experience the Delta Difference. Delta Electronics is a leading global provider of innovative RF, microwave and millimeter wave interconnect solutions. We're proud to deliver a world-class customer experience - what we call the Delta Difference, by focusing on four key areas: Purpose, Process, People and Products/Solutions. The products we make keep people safe, connected, and informed in every type of environment. Knowing that our work makes a difference to people in mission critical situations around the world gives Delta a strong sense of purpose and pride.

Delta Electronics
Booth # 1103

RF Test Equipment

DS Instruments designs and manufactures unique RF Test Equipment including Signal Generators, Digital Attenuators, Mixers, RF Switches, Tracking Generators and Frequency Counters. Our products are compact, affordable and reliable, making them attractive to engineers and technicians in aerospace, education, military, communications, and laboratories overseas. Our most popular instruments are completely controllable via USB PC GUI, automated SCPI COM port commands, and front push-buttons making them some of the most flexible devices on the market.

DS Instruments
dsinstruments.com

Multi-unit testbed (MUT) for emulating RF environments!

First modular, isolated system for testing wireless devices without an anechoic chamber.

With the MUT, manufacturers of wireless products for 5g cellular networks and handsets, Wi-Fi, Bluetooth, Zigbee and other wireless protocols can lower test costs by as much as 90%, vs. third-party testing. Other applications include: robotics, tele-medicine, military communications and drones.

This “MUT” is a thoroughbred!

- Based on the proven technology of Equipto that exceeds requirements of toughest TEMPEST MIL standards
- Controllable wireless testbed emulates RF environments
- Compact, modular design adapts to test requirements
- Completely blocks outside signals and isolates internal tests
- Eliminates time consuming open-air testing
- Custom-sized and configured to individual requirements
- 120dB shielding up to 6 GHz, 100dB deep into microwave
- Provides the confidence you need for certification success

Multiple test compartments with variable shielding effectiveness to simulate interaction between devices in the real world.

Equipto Electronics Corp.

Made with pride in the USA

800-204-7225 Ext. 9 • 630-859-7840
email: sales@equiptoelec.com
www.equiptoelec.com
ISO 9001:2008 • Rolls Compliant • ITAR Certified
A Minority owned SDB

Get info at www.HFeLink.com
When Everything Depends On Precision,
You Can Depend On Delta!

Delta Electronics Mfg Corp
deltarf.com
978-927-1060
sales@deltarf.com

SMP - SMPM - SMPS

IMS 2019
Come see us at the show.
June 4-7 Booth #1103
Boston, MA

Delta Electronics Mfg Corp
deltarf.com
978-927-1060
sales@deltarf.com
Product Highlights

Manual Coaxial Switches SPDT
Ducommun offers 2 types of single-pole-double-throw (SPDT) manual coaxial switches for all applications. Current options range from DC to 3 GHz up to 50 Watts (CW) of power. For additional information regarding Ducommun’s manual coaxial switches, please contact a sales representative.

Ducommun
Booth # 1146

Packaging Solutions
Equipto Electronics Corp is a premier provider of packaging solutions for (COTS) electronics including packaging for Communications, Data and Power. We provide electronics racks to meet earthquake, EMI/RFI, FCC, Military (MIL-STD-167, MIL-STD-461, MIL-STD-810 & MIL-STD-901) Tempest (NSA 94-106), EMP and European EMC requirements. Equipto is able to manufacture to meet your spec or customize any of our standard products to meet your needs (MOTS). Quantities small or large are not a problem. Our products are RoHS compliant. We are ISO 9001:2015 certified.

Robust Inductors
Gowanda is a leader in the design and production of robust inductors for the military/aerospace and defense industries. The company’s success is derived from decades of magnetics expertise combined with focused attention on the requirements in such demanding applications.

Gowanda
Booth # 236

Get Up to Speed — Fast!

RF Technology Certification
Next Session Starts Soon! - Online

Applied RF Engineering I
Next Session Starts Soon! - Online

EMI/EMC and Signal Integrity Boot Camp
July 29 to August 2, 2019, San Diego, CA

Smartphone RF and 5G Radio Architectures
July 29 to 31, 2019, San Diego, CA

RF Power Amplifier Design Techniques
July 29 to August 1, 2019, San Diego, CA

Cognitive Radios, Networks, & Systems for Digital Communication
September 26 to 27, 2019, San Diego, CA

5G Radio Systems and Wireless Networks
September 23 to 25, 2019, San Diego, CA

5G, mmWave Antennas: Integration and Test
September 26 to 27, 2019, San Diego, CA

Phased Array Radar
Check our website for the latest schedule

www.BesserAssociates.com

Corporate Training Services
Besser Associates can provide our online and traditional classroom courses exclusively for your team. Our instructors can present almost any course from our full catalog at your domestic or international location. Contact us for more details!

www.besserassociates.com info@besserassociates.com

Get info at www.HFeLink.com
Product Highlights

RF, Microwave Components
Herotek, Inc. has been a quality supplier of RF and Microwave components since 1982. Herotek is a broad-based, high technology company supplying parts for the Military, Industrial and Commercial markets with designs from DC to 75 GHz. It offers standard products as well as thousands of custom designs, and is happy to match existing products. Herotek offers Detectors, Comb Generators, Limiters, Switches, GaAsFet Amplifiers (Broadband, Low Noise, and Power) and integrated subsystems of many types, including up and down converters, multipliers, harmonic mixers, and transceivers.

Herotek
Booth # 1055

Adapters, Connectors, and More
Fairview Microwave is a leading provider of high-quality RF and microwave components including adapters, connectors, attenuators, coaxial cables, terminations, and much more.

Fairview Microwave
fairviewmicrowave.com

Cable Assemblies
Founded in 1970, IW developed a unique PTFE lamination process and applied it to manufacturing wire and cable. This process allowed IW to manufacture products of unprecedented reliability along with smaller diameters.

IW Microwave
Booth # 571
Microwave Components, Inc., was established in 1980 as a specialized RF/Microwave and more recently, millimeter wave stocking distributor. We specialize in interconnect products and low loss cable/cable assemblies and several other RF components from antennas to board level components. More recently, we offer customers an avenue to integrated microwave assemblies for a custom designed solution for evolving market needs for miniaturized multi-function devices. The markets we serve include aerospace/defense, telecommunications, test & instrumentation and others.

Microwave Components
mwc-llc.com
Extension Modules

OML can extend the frequency range of your existing spectrum analyzer to millimeter wave frequencies with our single diode unbalanced harmonic mixers. Harmonic mixers are available for the waveguide bands between 18 and 325 GHz. These frequency extension modules are compatible with most spectrum analyzers that offer optional external mixer access. By substituting the harmonic mixer for the existing microwave input, you can expand your spectrum analyzer frequency coverage for millimeter wave measurements.

OML
Booth # 728

Capacitors
Passive Plus, Inc. (PPI) is a manufacturer of high-performance RF/Microwave passive components for the Medical, Semiconductor, Military, Broadcast, and Telecommunications Industries. Established in 2005 in New York by industry executives with over 30 years’ experience in Sales, Program Management and RF Engineering and Development, PPI strives to be the best RF/Microwave capacitor company in the industry. PPI specializes in High-Q, Low ESR/ESL Capacitors, Broadband Capacitors, Single Layer Capacitors, Non-Magnetic Resistors (High Power and Thin Film) and Trimmer Capacitors.

Passive Plus
Booth # 734

Wide Range of Components
Since 1972, Pasternack has steadily grown by aligning its offerings to match the needs of our Customers. We maintain an inventory of more than 40,000 products that are always available which gives you access to products ranging from the rare, hard-to-find specials to the broadest array of industry standards.

Pasternack
Booth # 1273

FASTER, QUIETER, SMALLER
SIGNAL SOURCES
QUICKSYN SYNTHESIZERS

Design smaller and more efficiently with National Instruments QuickSyn synthesizers. The revolutionary phase-refining technology used in QuickSyn synthesizers enables blazing fast switching speeds, very low spurious and phase noise performance, wide frequency range, and small footprint.

ni-microwavecomponents.com/quicksyn

Get info at www.HFeLink.com
Planar Monolithics was founded basically to take advantage of the growing demand in monolithic-based products using the Hybrid MIC/MMIC technology innovations that are mushrooming in a big way all over the world. High performance and reliable products can be obtained by using this technology. A vacuum exists in the demand for state-of-the-art Hybrid MIC/MMIC Components and Subsystems. Planar Monolithics will meet these requirements.

Planar Monolithics Industries
Booth # 859

Surge Protection
For more than four decades PolyPhaser has worked to become the Authority on Lightning and Surge Protection. Our Mission- We support our customers with a sense of urgency, providing innovative lightning and surge protection solutions for RF applications that ensure reliable operation of critical systems for a connected world. Our Vision- To be the global authority and leading technology provider of RF protection products that meet the demands of an evolving global market.

PolyPhaser
polyphaser.com

Passive Component Experts
Pulsar Microwave Corporation, established in 1987, is a valued supplier of high quality RF and microwave passive components in the frequency range of DC to 85 GHz. Custom specifications are available at little to no extra cost, when based on a standard catalog item. Attenuators, bias tees, couplers, DC blocks, and much more.

Pulsar Microwave
pulsarmicrowave.com
Frequencies at 28 GHz and higher will soon be used in Fifth Generation (5G) wireless communications networks. 5G infrastructure will depend on low-loss circuit materials engineered for high frequencies, materials such as RO4835T™ laminates and RO4450T™ bonding materials from Rogers Corporation!

Rogers RO4835T spread-glass-reinforced, ceramic-filled laminates are low-loss materials in 2.5, 3.0, and 4.0 mil thicknesses. They are well suited for millimeter-wave frequencies as part of the inner cores of 5G hybrid multilayer PCBs. They can work with other materials to provide the many functions needed by 5G wireless base stations, including power, signal control and signal transfers.

Rogers RO4450T bonding materials are available in 3, 4, and 5 mil thicknesses to help construct those 5G hybrid multilayer circuits. These spread-glass-reinforced, ceramic-filled bonding materials complement the different materials that will form these hybrid circuits, including RO4835T and RO4000® laminates. And for many 5G hybrid multilayer circuits, Rogers CU4000™ and CU4000 LoPro® foils will provide a suitable finishing touch for many hybrid multilayer circuit foil lamination designs.

5G is coming! Do you have the right circuit materials? Learn more at www.rogerscorp.com/5G
MMIC MIXERS & MULTIPLIERS

up to 40 GHz

Ideal for frequency conversion in 5G applications
Low conversion loss and excellent harmonic suppression
Available in 3x3mm QFN packages and bare die format

Mini-Circuits®
www.minicircuits.com (718) 934-4500 sales@minicircuits.com
Advanced Materials

We are the world’s technology leaders in innovative solutions for power electronics, advanced foams for cushioning and protective sealing, and high-frequency printed circuit materials. When reliability, efficiency and performance are critical, design engineers partner with Rogers to develop and deliver the material technologies they require. For over 180 years, we have developed new solutions to empower our customers’ breakthroughs and help them create a leaner, safer, and more connected world. Headquartered in Chandler, Arizona, USA, we serve our customers and partners around the globe.

Rogers Corp.
Booth # 448

RF and Microwave Subsystems

Founded in 2009, SignalCore, Inc. is a privately held company based in Austin, Texas. SignalCore designs and manufactures high quality, instrument grade RF and microwave subsystems. We serve customers worldwide in the industries of measurement, communications, aerospace, defense, academia, and electronics manufacturing. Our extensive engineering knowledge and experience in the design and manufacturing of high performance RF and microwave solutions ensures that our products are of the highest quality and reliability in the industry.

SignalCore
Booth # 274

Resistives Expertise

State of the Art, Inc. is the leading supplier of thick and thin film resistive components to the Biomedical, Communications, Aerospace, and Defense industries. We are the industry leader in providing customers with quality, reliability, value, prompt and courteous customer service, and the most advanced technology available. We are dedicated to achieving and maintaining an unsurpassed level of excellence in all aspects of our operations. We are committed to the ethical behavior and the fair treatment of our customers, suppliers, community, and fellow employees.

State of the Art
Booth # 1129
Times Microwave Systems is a subsidiary of Amphenol Corporation (NYSE: APH) and part of the Amphenol Military and Aerospace division. TMS designs and manufactures high performance coaxial cables, connectors and cable assemblies for military, aerospace, telecommunications, industrial RF and microwave applications. For over 70 years Times has been committed to innovation, quality and the development of new products for demanding applications.

Power Sensor: Advanced Video Filters

LadyBug Technologies’ LB480A and LB680A RF Power Sensors with Option 004 make wide bandwidth time domain trace measurements. The detected video filters include a selection of 9 frequencies between 100 kHz and 10 MHz.

The filters are ideal for honing in on your signal’s modulation. Along with LadyBug’s advanced averaging techniques, the filters can aid in reducing noise that interferes with the desired video information. Signals can be cleaned so that accurate peak and pulse power levels are quickly measurable.

Additionally, the sensors can make statistical pulse measurements programmatically or with LadyBug’s Power Meter Software. This makes them ideal for manufacturing test systems. Filters are provided with option 004 on Ladybug LB480A (50-MHz to 8-GHz) and are included with the LB680A (50-MHz to 20-GHz) power sensors.

Extensive programmatic support is provided for system builders.

LadyBug Technologies
Booth # 1255

MM-Wave Expertise

Norden Millimeter has extensive experience in product development and manufacturing of millimeter wave amplifier products to specific customer specifications with quality and customer satisfaction the ultimate objective. MMIC technology is used extensively throughout our product base. Extensive qualification is used to insure MIC integrity during our manufacturing process and for our customer’s final application. Waveguide is offered for our millimeter wave products. WR-42, WR-28, WR-22, & WR-19 waveguide connectors can be used on all of our standard housings in lieu of threaded connectors. WR-15, WR-12 and WR-10 housings are split-block designs with waveguide being an integral part of the housing.

Norden Millimeter
Booth # 1306
Tiny MMIC Gain Slope Equalizers Flatten DC-20 GHz

Mini-Circuits’ EQY-5-24+ is an absorptive MMIC gain equalizer with a negative 5.1 dB slope versus frequency from DC to 20 GHz. Fixed slope MMIC equalizers are useful for flattening negative gain slope in wideband amplifiers, receivers and transmitters in applications from wireless communications to broadband/optical, satellite, defense and more. This model is capable of handling up to +34 dBm RF input power and provides 20 dB typical return loss across its full bandwidth. Fabricated using highly repetitive GaAs IPD technology, this equalizer provides outstanding repeatability of performance, making it suitable for volume production. It comes housed in a 2 x 2mm 8-lead QFN package, saving board space and minimizing the effect of parasitics. EQY-series MMIC gain slope equalizers are available with a wide range of slope values to meet your needs.

High Dynamic Range MMIC Amplifier with Shutdown Feature, 1 MHz to 1 GHz

Mini-Circuits’ TSS-13LN+ ultra-high dynamic range MMIC amplifier provides industry-leading noise figure and IP3 from 1 MHz to 1 GHz. An internal shutdown feature protects the amplifier in the presence of pulsed signals while keeping the power supply at constant voltage to minimize DC power consumption. This model provides 1.1 dB noise figure and +39.2 dBm IP3, making it ideal for maximizing sensitivity and dynamic range in high-performance receiver applications. It delivers 22.8 dB typical gain with ±3.0 dB flatness, and +19 dBm output power at 1 dB compression. The amplifier is fabricated using E-PHEMT technology with excellent repeatability. It operates on a single 8V supply, and comes housed in a tiny 12-pad 3x3mm QFN package.

Tiny High-Rejection LTCC Low Pass Filter, DC to 530 MHz

Mini-Circuits’ LFCG-530+ is an LTCC low-pass filter with a passband from DC to 530 MHz. This model provides 1.0 dB typical passband insertion loss and stopband rejection of 30 dB typ. The filter is capable of handling up to 4W RF input power and provides a wide operating temperature range from -40°C to 85°C. Housed in a tiny 0805 ceramic form factor with wraparound terminations, the LFCG-530+ is ideal for dense PCB layouts with minimal performance variation due to parasitics.

Tiny LTCC Dual/Differential Low Pass Filter, DC to 1600 MHz

Mini-Circuits’ DLFCV-1600+ is a dual low pass filter with a passband from DC to 1600 MHz designed into a single 1210 ceramic package. This design allows customers to use a single unit in systems where two filters of the same passband are required, saving board space. The dual filter can also be used as a differential filter in differential circuits where interference and noise must be minimized. This model provides 1.5 dB passband insertion loss, 50 dB stopband rejection, and RF input power handling up to 3W (each filter). It supports a wide range of applications and is ideal for minimizing interference at amplifier inputs and ADC outputs.

Ultra-Low Noise D-PHEMT Transistor, 10 to 4000 MHz

Mini-Circuits’ TAV1-331+ is a MMIC D-PHEMT transistor with an operating frequency range from 10 to 4000 MHz, supporting a wide range of wireless communications bands. This model provides a unique combination of low noise (0.6 dB) and high gain (24.1 dB), resulting in lower overall system noise. It also provides high IP3 performance of +31.8 dBm, making it ideal for sensitive receiver applications. Manufactured using highly repeatable D-PHEMT technology, the unit comes housed in a tiny 1.4 x 1.2mm MCLP package. This model requires external biasing and matching.

Coaxial Adapter Mates 1.85mm-F to 2.92mm-F Connectors

Mini-Circuits’ 185F-KF+ is a coaxial 1.85mm-F to 2.92mm-F adapter, supporting a wide range of applications from DC to 40 GHz. This model provides 1.05:1 VSWR, and 0.13 dB insertion loss with flat response over its full frequency range. The unit features rugged, passivated stainless steel construction and measures 0.82” in length.
24 GHz to 44 GHz Wideband Up & Downconverter

Analog Devices announced the ADMV1013 and ADMV1014, a paired highly integrated microwave upconverter and downconverter, respectively. These ICs operate over a very wide frequency range with 50 Ω-match from 24 GHz up to 44 GHz, facilitating ease of design and reducing the costs of building a single platform that can cover all 5G mm Wave frequency bands including 28 GHz and 39 GHz.

Additionally, the chipset is capable of flat 1 GHz RF instantaneous bandwidth supporting all broadband services as well as other ultra-wide bandwidth transceiver applications. Each upconverter and downconverter is highly integrated, comprising I (in-phase) and Q (quadrature-phase) mixers with on-chip programmable quadrature phase-shifter configurable for direct conversion to/from baseband (operable from DC to 6 GHz) or to an IF (operable from 800 MHz to 6 GHz). Also included on-chip are voltage variable attenuators, transmit PA driver (in the upconverter) and a receive LNA (in the downconverter), LO buffers with x4 frequency multiplier and programmable tracking filters.

Most programmability functions are controlled via an SPI serial interface. Through this port, these chips also provide a unique capability for each upconverter and downconverter to correct its respective quadrature phase imbalance, hence the usually difficult to suppress sideband emission can be improved from a typical value of 32 dBc, by 10 dB or more. This results in an unmatched level of microwave radio performance. The combination of features provides unprecedented flexibility and ease of use while minimizing external components, enabling implementation of small form factor systems such as small cells.

Analog Devices
Booth # 918

Ducommun RF Switching Solutions from DC-110 GHz

PIN diodes from 30MHz to 110 GHz
- SPST, SPDT
- SP4T, SP6T, SP8T
- Broadband, Narrowband
- High-Power

Coax switches from DC to 46 GHz
- SPDT, Transfer
- SP3T-SP10T
- Non-terminated & Terminated
- 50Ω and 75Ω impedances

Ducommun offers Switch Matrix Solutions!

www.ducommun.com/engineeredsolutions/rfproducts
For additional information contact our sales team at: 310-513-7233 or rfsales@ducommun.com
side of the attenuator; however in cases where large source mismatch presents an issue, these attenuator mismatch errors are generally small in comparison to the larger source mismatch. Users requiring the highest level of accuracy should take all factors into account.

While mismatch is usually the most significant component of a measurement’s uncertainty it is only one of many. Another component is the sensor’s Calibration Factor uncertainty. This important uncertainty represents the accuracy of the sensor’s calibration, and is often stated by manufacturers as the sensor's accuracy because the DUT mismatch is unknown. However sensor-to-DUT mismatch is most often a more significant uncertainty.

An easy way to begin calculating measurement uncertainty and increase your overall measurement accuracy and understanding, is to workup the uncertainty of a measurement using a power sensor manufacturer’s uncertainty worksheet or spreadsheet. For example, the last pages of the above-mentioned LB5940A power sensor’s data sheet includes a worksheet and completed example that covers the most significant factors in a typical power sensor measurement. Most high quality power sensor manufacturers provide similar worksheets.

A power sensor manufacturer can supply specifications. However, it is not possible to determine the accuracy of any measurement without knowing the measurements parameters. Most of the specifications have an associated parameter such as frequency or power level. These will determine which specification from the sensors data sheet is applicable. Once these are all known, they can be included in an RSS calculation to determine the total measurement uncertainty.

In conclusion, for the best accuracy, make the distinction between sensor accuracy and measurement accuracy, then use the sensor’s specifications to develop a full understanding of your measurement’s uncertainty. This will give you confidence in the measurement and allow you to improve the accuracy as needed.

About the Author

Orwill Hawkins serves as VP of Marketing at LadyBug Technologies.
QUALITY, PERFORMANCE AND RELIABILITY IN PRECISION COAXIAL CONNECTORS

Including These Connector Series

<table>
<thead>
<tr>
<th>Connector Size</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85mm</td>
<td>DC-65 GHz</td>
</tr>
<tr>
<td>2.4mm</td>
<td>DC-50 GHz</td>
</tr>
<tr>
<td>2.92mm</td>
<td>DC-40 GHz</td>
</tr>
<tr>
<td>3.5mm</td>
<td>DC-34 GHz</td>
</tr>
<tr>
<td>7mm</td>
<td>SSMA DC-40 GHz</td>
</tr>
<tr>
<td>7mm</td>
<td>DC-18 GHz</td>
</tr>
</tbody>
</table>

ISO 9001:2008

SGMC Microwave — The name to count on for Quality, Performance and Reliability! Please contact us today by Phone, Fax or Email.

SGMC Microwave
Manufacturer of Precision Coaxial Connectors
620 Atlantis Road, Melbourne, FL 32904
Phone: 321-409-0509 Fax: 321-409-0510
sales@sgmcmicrowave.com
www.sgmcmicrowave.com

Get info at www.HFeLink.com
Armed with the world’s largest selection of in-stock, ready to ship RF components, and the brains to back them up, Pasternack Applications Engineers stand ready to troubleshoot your technical issues and think creatively to deliver solutions for all your RF project needs. Whether you’ve hit a design snag, you’re looking for a hard to find part or simply need it by tomorrow, our Applications Engineers are at your service. Call or visit us at pasternack.com to learn more.