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Fast settling time is
always desirable in
any PLL (phase

lock loop), as long as the
noise performance is
within limit. One applica-
tion where fast settling is
of high importance is in

the design of a network analyzer. A PLL is
used to synthesize both the source signal for
the device under test and the LO signal for
down conversion. With a faster settling source
and LO, more measurements can be done for a
given period of time, thus improving measure-
ment throughput. In a test environment, this
improvement directly yields higher productiv-
ity, since more parts can be tested. In addition
to that, faster sweep time in a network ana-
lyzer will enable a user to approach real time
measurement to capture any intermittent sig-
nal or glitches.

Settling time in this case refers to the time
it takes for the loop to pull the frequency error
Ferr at the phase frequency detector output
(FvcoN – Fref as in Figure 1) to the specified
frequency, without the PLL losing lock. This
process is linear so the settling can be conve-
niently analyzed through the use of a transfer
function. If the initial Ferr is larger than the
pull out range of the PLL, the loop will lose
lock or “cycle slip” and acquisition will need to
take place before settling can take place. This
paper only discusses settling, assuming that is
the Ferr is always less than the pull out range
and the loop never loses lock.

When it is required to change the output
frequency of a PLL, the first thing that needs
to happen is to either change the divider value
N at the feedback path or change the refer-

ence frequency Fref. The former is usually the
case. The changes of N will be in a step and as
the loop never lose lock, the settling time can
be analyzed. The basic procedure is to calcu-
late the close loop transfer function and mul-
tiply it with the step input. Through inverse
Laplace transform, the output response in
time domain can be analyzed and the settling
time can be quantified.

Most of the time, the settling time is ana-
lyzed by looking at the Ferr but in this paper,
the settling time is analyzed through Fvco
since this is the variable that we want to have
the fastest settling. The Fvco could have settled
while the Ferr is still trying to find a stable
point, or vice versa.

Usually, the closed loop transfer function is
defined as the ratio of θvco/θref where θvco and
θref are the phase of the VCO and the
Reference signal, respectively. As we are inter-
ested in analyzing the settling of the frequen-
cy rather than the phase, the ratio needs to be
changed to Fvco/Fref. Figure 1 shows the PLL
block diagram whereby the input and the out-
put are in frequency, rather than in phase. As
far as close loop transfer function, θvco/θref will
be the same as Fvco/Fref as shown in (1).

The author shows that 
mapping the denominator

of the closed loop PLL
transfer function to the

Gaussian function results in
the fastest settling time

Figure 1  ·  Type 2 PLL block diagram.
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(1)

Figure 1 is a generic 2nd order Type 2 charge pump
PLL that consist of charge pump phase detector, loop fil-
ter, VCO and Divider on the feedback path. Even though
charge pump PLL is used throughout the analysis, the
final results achieved can be adapted to another PLL
whereby the output of the phase detector is a voltage
rather current. The abbreviation PLL will be used
throughout the analysis for simplicity. The Rz and Cz on
the loop filter create the zero required for Type 2 PLL sta-
bility. Kp and Kv (highlighted in red) are the gain of the
phase detector and the VCO respectively.

Research and design work related to fast settling PLL
are not many and this paper will cover that in detail. The
approach presented here is to achieve the fastest settling
Type 2 PLL, by taking the advantage of Gaussian func-
tion which, from linear control theory, is well known to
provide the fastest rise time and fall time, with no over-
shoot, in response to a step function input. Not only does
a Gaussian function provide the fastest settling for a step
input, but it also provides the fastest settling to an
impulse input.

Theory and Discussion
As the closed loop transfer function Fvco/Fref is that of a

low pass filter (LPF), several LPFs of different topologies
were synthesized using ADS and the settling response in
the time domain to a step input and impulse input were
analyzed. The 3 dB cutoff of all the filters were normalized
to 1 rad/s and the order is set to 4. This is to graphically
prove that a Gaussian filter does provide the fastest set-
tling, compared to other filter topologies. Figure 2 is the
impulse response of the LPFs. Even though Gaussian has
the highest overshoot, it is actually the fastest to settle;
well within 1 second. Figure 3 is the step response and

Gaussian LPF has the fastest rise time and peaks with a
little bit of overshoot, if we zoom in very close.

A true Gaussian filter should not have any overshoot
at all on the step response. The reason for the small over-
shoot on the step response is due to the polynomial equa-
tions used to approximate Gaussian magnitude function
which is defined in (2).

(2)

A series with an infinite number of terms is required
in order to truly represent the Gaussian response of (2). A
polynomial approximation is typically used to make the
filter realizable through resistor R, inductor L and capac-
itors C. This filter is called polynomial filters. For a 3rd
order approximation, (2) can be approximated by (3)

(3)

where a2, a1 and a0 are the coefficients of the polynomial,
and it determines the topology of the filters, whether
Gaussian, Butterworth, Bessel and so on.

Achieving exactly Gaussian response where there is
no overshoot on the step response, is not entirely possible
in a Type 2 PLL since a zero in the numerator of the
closed loop transfer function will give rise to an overshoot,
when driven with step input. A true Gaussian function,
approximated through polynomials as in (3), only has
poles but not zeros. The zero in a Type 2 PLL is required
for the loop stability since typically, n–1 zero is required
for a type n loop.

In a circumstance where a true Gaussian response is
desired, Type 1 PLL can be used where there will be no
zero in the numerator of the close loop transfer function.
Removing the zero in the numerator of the PLL closed
loop transfer function eliminates the impulse output
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Figure 2  ·  Settling time of different LPFs, driven with an
impulse input.

Figure 3  ·  Settling time of different LPF, driven with step
input.
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which may look like an overshoot, so fastest settling time
can be achieved. Extensive considerations need to be
taken when choosing Type 1 PLL since in many aspects,
Type 2 is far more superior. The next two paragraphs
explain the downsides of a Type 1 PLL.

The DC gain in Type 2 is limited only by the open loop
gain of the op amp used for the loop filter. This large DC
gain in Type 2 will force the static phase error at the
phase detector output to be close to zero, or it can be set
constant at one value. The static phase error in a Type 1
PLL is not constant, but depends on VCO output fre-
quency. The phase error will be such that a correct tuning
voltage is generated to produce required output at the
VCO. This difference is significant since we typically want
to operate the phase detector close to 0º phase error to
minimize reference energy feed through and at the same
time ensure that the phase detector is operating in the
most linear region. Since the phase error in Type 1 varies,
at some output frequencies, the phase detector could be
forced to operate at its “dead zone,” where intermittent
unlock could take place and phase noise degradation
could be a problem.

Another benefit of a Type 2 PLL is that the VCO’s
phase noise inside the LBW will be attenuated at
40 dB/decade whereas in Type 1, the attenuation is only
20 dB/dec. Figure 4 shows the comparison between type 1
and type 2 PLL phase noise. The LBW is roughly around
80 kHz. For a microwave VCO that works up to 10 GHz, a
GaAs FET is typically used as the active device to gener-
ate the negative resistance. GaAs FETs have a high 1/f
corner frequency of few MHz, and this will cause the
VCO’s phase noise to have 30 dB/dec roll off, up to that 1/f
corner frequency. So, if type 1 PLL is used together with
a microwave GaAs FET VCO, within the LBW, the phase
noise contribution of the GaAs VCO at the PLL output
would have a slope of 30 dB/dec – 20 dB/dec = 10 dB/dec.
This is apparent in Figure 4 where the Type 1 phase noise

rolls off from 60 dBc/Hz at 100 Hz offset, to 80 dBc/Hz at
10 kHz offset. Based on these two reasons, the Type 1
PLL is rarely used.

So how do we design a type 2 PLL that takes advan-
tage of Gaussian fast settling performance? Recall that
the PLL close loop response is lowpass and with a zero on
the numerator, whereas Gaussian function has no zero on
the numerator. Trying to match the two curves or trying
to match the two transfer functions will not work, mainly
due to the zero that PLL closed loop transfer function has.
We start by defining the closed loop transfer function of
the PLL as shown in (4). Without loss of generality, a 3rd
order loop is used.

(4)

In (4), K2 is just a constant and ωz is the zero to make
the loop of Type 2. a2, a1 and a0 are the coefficients of the
denominator, as in (3). To understand the settling of Fvco,
we multiply (4) with ΔFref/s, as shown in (5).

(5)

Fref is the step change at the reference port which will
cause Fvco to change. As discussed at the beginning of this
paper, when we want to change Fvco, we usually accom-
plish this by changing the divider N. Let say the current
VCO frequency is Fvco and the current divider N is Nold.
When Nold is changed to Nnew, the corresponding step at
the reference port is shown in (6). This value can then be
substituted into (5)

(6)

Expanding and simplifying (5), we can rewrite it as:

(7)

K3 and K4 are just constants. By analyzing (7), we can
say that the step response of a Type 2 PLL is equivalent to
the sum of the step response and impulse response of a low
pass filter whose transfer function is defined in (3). K3 is
the impulse input and K4/s is the step input.

Understanding (7) is the key to designing the fastest
settling PLL. As graphically shown in Figures 2 and 3,
Gaussian LPF provides the fastest settling when excited
with either impulse input or step input. So if the denomi-
nator of the PLL transfer function is mapped to the
Gaussian LPF denominator, that is a2, a1 and a0 are select-
ed so that it approximates a Gaussian function, then a

F s K
K
s

a
s a s a s avco( ) ( )= +

+ + +3
4 0

3
2

2
1 0

ΔF
N
N

Fref
old

new
ref= −( )1

F s
F

s
K s

s a s a s avco
ref z( )

( )= +
+ + +

Δ 2
3

2
2

1 0

ω

F
F

s
K s

s a s a s a
vco

ref

z( )
( )= +

+ + +
2

3
2

2
1 0

ω
Figure 4  ·  Typical phase noise of a PLL, comparing
Type 1 and Type 2.
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Type 2 PLL with the fastest settling time can be achieved.
It might look easy to just solve for a2, a1 and a0 but as

will be shown, they depend on several variables—for
example, the loop gain, ωz, the pole ωp and few others. On
top of that, the LBW required is not the f3 dB of the
Gaussian filter thus making it more complicated. Instead
of solving for a2, a1 and a0, the set of variables that make
a2, a1 and a0 will be solved. 2nd Order Type 2 up to 7th
Order Type 2, will be analyzed.

2nd Order Type 2 Fastest Settling PLL
2nd Order Type 2 PLL should have a closed loop trans-

fer function as defined in (8). The objective is to map the
2nd order denominator in (8), to the 2nd order Gaussian
LPF. We start by coming up with a normalized L and C for
the LPF. To simplify the analysis, the singly terminated
topology where the load impedance is infinite is used.

(8)

Table 1 lists the normalized values of LnN and CnN for
2nd, 3rd, 4th, 5th, 6th and 7th order Gaussian filter,
where the ω3dB is normalized to 1 rad/s. Figure 5 is the
equivalent circuit for the nth order and singly terminated
filter, that will be used together with the normalized LnN
and CnN listed in Table 1. In Figure 5, for even order, Cn
should be deleted, and Ln should be the first component
after the 1 ohm.

The source resistance is normalized to 1 ohm and the
load is infinite, hence singly terminated. The normalized
components LnN and CnN need to be scaled for a different
ω3dB cutoff, as per (9) and (10). There is no source
impedance to be defined for a PLL so it is left at 1 ohm,
which is going to simplify the analysis.

(9)

(10)

For 2nd order filter, the equivalent circuit is shown in
Figure 6 and the transfer function is shown in (11)

(11)

We can now proceed to calculate the closed loop trans-
fer function of the PLL. The circuit shown in Figure 1 is
actually of 2nd order Type 2 PLL so we can use this fig-
ure to calculate the transfer functions. The open loop gain
OL(s) is shown in (12) and is calculated by multiplying
the gain around the loop.

(12)

The LBW can be calculated from (12) by setting the
OL gain to 1 and s = jω0, where ω0 is the unity crossover
frequency or the LBW. From this point onward, ω0 will be
used to represent LBW. This is shown in (13).

(13)

The ω0 can be solved after rearranging (13), as shown
in (14). Xoz is the ratio of ω0 to ωz, as in (14), and the value
is a constant that needs to be solved in order for the
denominator of the close loop transfer function to be of
Gaussian. By knowing Xoz, we will have knowledge on
where to place ωz, based on the required ω0.
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Table 1  ·  Gaussian low pass filter components, where
the value is normalized to ωω3dB =1 rad/s and Rs = 1.

Figure 6  ·  2nd order low pass filter circuit.

Figure 5  ·  Generic circuit to be used for the Gaussian
low pass filter.
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(15)

The closed loop transfer function CL(s) can be calcu-
lated using the famous negative feedback equation
defined in (16), where A(s) is the forward gain and B(S) is
the feedback gain. 1/s is the frequency to phase convert-
er at the input of the PFD.

(16)

Based on this, the close loop transfer function CL(s)
can be shown to be of (17),

(17)

Substituting (14) and (15) into (17), we arrive at (18).

(18)

Now we can equate the denominator of (18) to the
denominator of (11). The two equalities are shown in (19)
and (20)

(19)

(20)

What we want to find are the constants Xoz, ω0, and
ω3dB. The equivalent ω3dB for the low pass filter does not
equal to ω0 but the ratio of the two will be a constant, just
like Xoz. A new variable call Xof is defined in (21)

(21)

Substituting (9) and (10) into (19) and (20), and using
(21), we arrive at (22) and (23)

(22)

(23)

Solving (22) and (23) simultaneously, the value of Xoz

and Xof can be calculated.

Xoz = 3.5476 (24)

Xof = 2.6735 (25)

For example, let say a fastest settling 2nd order Type
2 PLL with ωo = 100 krad/s need to be designed. First
thing to do is to calculate ωz which is simply ωz = ωo/Xoz =
28.19 krad/s. Usually Rz shown in Figure 1 is set first so
that a small value can be chosen. A small Rz value is
favorable for lower noise. The value of Cz can be calculat-
ed accordingly. Once Cz is calculated, then the value of Kp
required to set the ωo =100 krad/s can be calculated.
Solving Kp in (13), we achieve (26). (26) assumes that Kp
can be varied so that the ωo can be set accordingly.

(26)

Xof is not being used as far as PLL design is concerned,
but will be used to indicate the settling speed of the PLL.
For this example, ω3dB is lower than ωo by a factor of
2.6735. The absolute value ω3dB is 37.4 krad/s. So even
though the LBW is designed at ωo =100 krad/s, the equiv-
alence ω3dB of the Gaussian LPF is 37.4 krad/s. That
means the PLL will have a settling speed of 37.4 krad/s
Gaussian LPF.

As far as settling speed is concerned, the smaller the
value of Xof the faster is the settling time of the PLL. It
will be shown empirically that the higher the order of the
PLL, the smaller is the value of Xof, which means that a
higher order loop is faster, for a given ω0.

At this point, the stability of the PLL needs to be ver-
ified as well and this can be done through the phase mar-
gin. The phase margin is the sum of OL(s) phase and
180°, at ω0. From (12), the phase margin can be calculat-
ed as follows,
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Figure 7  ·  3rd order Type 2 PLL.



PM = 74.258°

With a phase margin of 74.258, the stability of the
PLL is guaranteed.

3rd Order Type 2 Fastest Settling PLL
A 3rd order type 2 PLL will have additional capacitor

Cp as shown in Figure 7. A 3rd order PLL will have a
higher rejection of Fref, so any feed through or “junk” from
Fref will be further attenuated. The treatment of a 3rd
order PLL is similar to 2nd order, but of course with high-
er complexity.

We start with the 3rd order Gaussian LPF, which has
the normalized values listed in Table 1. Figure 8 shows
the corresponding schematic.

The transfer function of the circuit in Figure 8 can be
shown to be of (27).

(27)

We can now proceed to calculate the OL(s) of the PLL
in Figure 7. The Rz, Cz and Cp will create a zero ωz and a
pole ωp as defined in (28) and (29) 

(28)

(29)

The OL(s) of the PLL, substituting (28) and (29), is
shown in (30).
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Figure 8  ·  3rd order low pass filter circuit.



The ω0 can be calculated from (30) by setting the OL
gain to 1 and set s = jω0. This is shown in (31). Xoz is the
ratio of ω0 to ωz, as in (15), and Xop is the ratio of ωp to ωp,
defined in (32). These two values are constants that need
to be solved in order for the denominator of the close loop
transfer function to be of Gaussian. By knowing Xoz and
Xop, we will have a knowledge on where to place ωz and
ωp, based on the required ω0.

(31)

(32)

Based on (16), the CL(s) is calculated and the final
result is shown in (33), after substituting (34) in. M3 is
just a constant to simplify CL(s).

(33)

(34)

Now we can equate the denominator of (33) to the
denominator of (27).

(35)

(36)

(37)

Again, instead of solving for ω0, we would like to solve
for Xof defined in (21). (35)-(37) can be rewritten as follow,

(38)

(39)

(40)

Solving (38) to (40) simultaneously, the value of Xop,
Xoz and Xof can be calculated.

Xoz = 2.6811 (41)

Xop = 0.3807 (42)

Xof = 1.6287 (43)

Xop and Xoz are all needed to design the 3rd order Type
PLL as in Figure 7. Assuming Kp is variable, its value can
be calculated from (31) for a given ωo. Xof for 3rd order is
actually smaller than 2nd order, and what that means is,
3rd order will settle faster than 2nd order for the same
ωo. Let’s check the phase margin for the 3rd order to
ensure that it is stable. From (30), the phase margin can
be calculated as follows,

PM = 48.704°

The phase margin for 3rd order is smaller than 2nd
order. At PM of 48.704, the loop is still stable.

Part 2 of this article will appear in the next issue, con-
tinuing with a discussion of the 4th Order Type 2 PLL.
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