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NON-UNIFORM DEVICES

Advanced Characterization
of Non-Uniform Passive
Devices

By Dr. Hatem Akel
BreconRidge

Non-uniform pas-
sive RF devices
are structures

that have non-identical
ports and/or ports that
function at different fre-
quencies. For example, a
device with a microstrip
input port and an SMA
output port, is a non-uni-

form device. Mixers, multipliers and dividers
are other examples of non-uniform devices
due to the fact that their ports operate at dif-
ferent frequencies. Measuring non-uniform
devices is a challenging mission. Indeed, stan-
dard calibration kits and procedures cannot be
used with non-uniform devices. Calibration
can only be performed if, and only if, the ports
of the device are identical and function at the
same frequency.

Designers have to use additional compo-
nents like transformers or transitions, com-
bining them with the original device under
test (DUT) to create a new device with uni-
form ports. After calibration, the measured
data represents the performance of the DUT
plus the additional component(s). If the scat-
tering matrix of the additional component(s)
is known, then one can easily de-embed the
additional component(s) from the total to
obtain the performance of the DUT.

Back-to-back measurement was proposed
as a way to overcome the non-uniformity prob-
lem [1]. Back-to-back configuration enables
the user to eliminate one of the ports, by cre-
ating a complex device with the same port
type and frequency (Figure 1). Consequently
traditional calibration and measurements can
be applied directly without any concerns. RF

designers can choose two devices of the same
kind to connect them back to back, or can have
two totally different devices, as long as the
ports and their operating frequencies are the
same in both devices.

The Ill-Conditioned Issue of the Back-to-
Back Measurements

Cascading two devices back-to-back leads
to a set of three complex equations with six
complex unknowns; Sa11, Sa12, Sa22, Sb11,
Sb12, Sb22. That means the problem is ill-con-
ditioned and cannot be solved. If both devices
were perfectly identical, which is impossible,
then the problem becomes solving two equa-
tions with three unknowns. This is also an ill-
conditioned problem.

Cascading three devices back to back: #1
with #2, #1 with #3, and #2 with #3, generates
nine complex equations with nine unknowns.
Although, the number of unknowns and the
number of equations are the same, the prob-
lem is still ill-conditioned because there is one
redundancy in the equations. Even if one uses
four or more devices, the problem is still there:
one redundancy. This redundancy means that

This article describes
advanced de-embedding

techniques for back-to-
back configurations which

enable measurement of
devices that do not have

uniform 50-ohm inputs
and/or outputs 

Figure 1  ·  Back-to-back cascading mea-
surements.
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one of the scattering elements of any of the devices must
be known ahead to be able to calculate the remaining
ones.

Solving the Ill-Conditioned Issue
To overcome the ill-condition problem, we proposed to

make use of the fact that for any two-port passive devices:
the amplitudes of the return losses are very close. First,
random values are assigned, for example to Sb22, while
the rest of the elements are calculated. A set of formulae
(Eq.4) was derived to calculate all scattering elements of
the three devices under test, assuming that Sb22 is
known. The criterion is to look for the value of Sb22 that
minimizes the three following equations respectively:

(1)

Sb22 random values can be obtained by splitting the
smith chart complex plane into a 200 × 200 grid, assign Sb22
one complex value at a time, evaluate all the scattering ele-
ments for every complex point, then choose the one that min-
imized the maximum of the three differences in Eq.1 (mini-
mizing the maximum was found more reliable than mini-
mizing the summation of the differences). If a more accurate
value is needed, create a 20 × 20 grid around the optimum
point, with 1/10 scale and repeat the calculations. The pro-
cess can be repeated for as many decimals as needed.

De-Embedding In-Between Additional
Component(s)

In many situations, an additional component(s) is
needed in between the DUTs connected back-to-back.
Designers would like to de-embed the effect of this compo-
nent and obtain the scattering matrices of the DUTs (Fig.
2). For example, if the ports we would like to connect are
both female SMA type of ports, then one needs to use a

male-to-male SMA cable to make the connection. To obtain
an accurate scattering matrix of the DUT, the male-to-
male transition should be de-embedded from the mea-
sured data. In the rest of the paper, the scattering matrix
of the additional component is referred to as the E matrix.

The assumption made is that this additional compo-
nent can be measured and consequently its scattering
matrix is known. To simplify the analysis and the deriva-
tions, one can combine the first device with the addition-
al one, to form a new component with a scattering matrix
labeled Sd. This will enable us to use many of the formu-
lae given in [1]. Once Sd is evaluated, then the addition-
al component is de-embedded from Sd, to extract Sa,
which the scattering matrix of the first device (Table 1).

The difference between the new configuration and the
one in [1] is in the third set, while the first two sets are
the same. The cascading formulae for the first set are:

(2)

Where the A-matrix is the result of cascading Sd with
Sb. For the second set, Sb is replaced with Sc to obtain the
B-matrix. Notice that we are again considering the cases
where Sa21 = Sa12, Sb21 = Sb12 and Sc21 = Sc12.

For the third set it is:

(3)
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Figure 2  ·  Back-to-back cascading measurements
with an additional component in between. Table 1  ·  Before and after combining Sa with the addi-

tional component, E.
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where the D-matrix is the result of cascading Sb with E and with Sc.

Solving for the Scattering Matrices
If Sb22 is known, then the following formulae (Eq.4) can be used to derive

the rest of the elements Sd11, Sd21, Sd22, Sb11, Sb21, Sc11, Sc21, Sc22
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Figure 3  ·  Combining Sa with E to form a new component.
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The optimum solution is the one that minimizes the
maximum of Eq. 1 formulae. The analysis proved that the
solution to any given A, B and D matrices is unique, and
that means that the approach presented in this paper is
consistent.

This approach was tested for many combinations
where all or some of the samples were too lossy, and all or
some of the samples had very bad return losses. Samples
with known scattering matrices were cascaded (sample
#1 with sample #2, sample #2 with sample #3, and sam-
ple #1 with sample #3), and the results were fed to the
program to extract the original scattering matrices of the
three samples. In all cases the results were very close to
the exact answers.

Special Case
If there is no additional component, then the problem

is similar to the case described in [1]. In this case, the E

matrix is replaced with the following matrix:

(5)

That is, the insertion is complete without any delay
and there is no return loss effect.

De-embedding Formulae
The analysis given in the previous section demon-

strates how Sd, Sb and Sc scattering matrices are calcu-
lated from the measured scattering matrices; A, B, and D.
Sd is the combination of Sa with the additional compo-
nent, and it is Sa that needs to be evaluated. Sa is
obtained by de-embedding the E-matrix from Sd (Fig. 3).

Assuming that port#2 of Sa that is connected to port#1
of the additional component, E, then Sd is equal to:

(6)
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W = (1.0 – Sa22E11)–1

Rearranging the variables, it can be shown that if E and Sd are known,
then the Sa matrix can be calculated using the following set of formulae:

(7)

Once the scattering matrices of the three samples are known, one can use
anyone of them to measure other devices or samples. This is equivalent to say-
ing that the derived scattering matrix is now part of the calibration kit for
other measurements. For example, if there are tens of samples of the same
kind to be measured, then one can do the following:

• Measure the additional component, if there is one
• Measure three samples using back-to-back setup, (with or without the

additional component)
• Extract the scattering matrices of each of the three devices,
• Cascade device # 1 with any of the other devices; 4th, 5th, …, (with or

without the additional component)
• And each time, de-embed the scattering matrix of device #1 and the

additional component(s) from the total to extract the scattering matrix
of the other device.

Conclusion
In this paper we demonstrated that there is a way to measure a device

with two different ports and/or frequency of operation, by simply using three-
device back-to-back measurements. The technique shown here presents the
case when an additional component, with known scattering matrix, is insert-
ed in between to perform the back-to-back connection. The analysis provided
in this paper is applicable to cases where the insertion losses are equal
(amplitude and phase) for any of the three devices used in the back-to-back
measurements, i.e., Sa21 = Sa12, Sb21 = Sb12 and Sc21 = Sc12.
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