High Frequency Design
DATA SIGNALS

From January 2009 High Frequency Electronics
Copyright © 2009 Summit Technical Media, LLC

Is the Sth Harmonic
Still Useful for Predicting
Data Signal Bandwidth?

By Mark Johnson
Agilent Technologies

s we attempt to
push data faster
nd faster through

serial interfaces, bit rates
get larger and bit periods
get smaller. A common
assumption made is that
as the bit rate increases,

clock with infinitely fast edges. As we know, a
perfect square wave can be represented as the
sum of an infinite number of sine waves.
These sinusoids have frequencies that are at
odd multiples of the fundamental frequency of
the clock. For example, a perfect 1 GHz clock
signal has a fundamental frequency of 1 GHz
and contains an infinite series of sinusoids of

Rather than use the simple
rule of thumb of including
the 5th harmonic, we
should use rise/fall time to
detemine the bandwidth
required fo measure a
high-speed digital signal

the signal contains more
energy at higher frequencies and, as a result,
higher bandwidth is required for the test
equipment such as oscilloscopes used to mea-
sure the signals. While this can be true it is not
always the case, as we shall see. The 5th har-
monic of a data signal (or 2.5 times the bit rate
for binary, NRZ data) is often used as a guide
for selecting the required bandwidth for test
equipment. In reality, the 5th harmonic is a
very poor predictor of essential frequency con-
tent and in fact has little relationship to criti-
cal components of a real data signal. A much
better predictor of the necessary measure-
ment bandwidth are the rise/fall times of the
system.

An increase in measurement bandwidth
almost always comes at a price beyond eco-
nomic—but also in the form of increased noise
and distortion. The increased noise not only
impacts amplitude measurements but it will
also impact the accuracy of timing measure-
ments—sometimes defeating the purpose of
the extra bandwidth in the first place. The
best compromise is to use a measurement sys-
tem with just enough bandwidth to measure
the signal accurately while minimizing the
extra noise introduced by the measurement
system.

First of all, let’s think about a perfect
square wave. Imagine that we could create a
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frequency 3, 5, 7, 9, 11 ... GHz. These are
referred to as harmonics of the fundamental
signal since they are located at (odd) integer
multiples of the fundamental frequency. The
amplitudes of the harmonics in this perfect
clock are defined by the relationship: Amp =
abs(sqrt(2)*SquareWaveAmp*sin(pi*harmon-
ic.number/2)/pi*harmonic.number)

So for a perfect clock of peak-to-peak
amplitude 1V, the peak-peak voltages of the
fundamental and the first three harmonics
would be:

Harmonic |1 (funda-| 3rd 5th Tth
Number mental)
Amplitude| 0.45V |0.15V | 0.09V [0.064V

If we wanted to measure this clock with
zero rise/fall times then obviously the more
bandwidth our measurement instrument has,
the more accurate the measurement. As we
can see, the amplitude of the 5th harmonic is
9% of the amplitude of the resultant signal
(0.09V/1V).

Of course, real signals have finite rise/fall
times. Correspondingly they don’t have an
infinite number of harmonics. In Figures 1-3,
we created a 0.5Vp-p 500 MHz clock with 3
different edge speeds using commonly avail-
able transition-time converters. The signals
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Figure 1 - 500 MHz clock with 9 ps
rise/fall time (20-80%); 5th harmon-
ic amplitude = 8.6%.

were measured with a 26.5 GHz RF
spectrum analyzer to analyze the
amplitude of the 5th harmonic.

With a perfect edge, the harmonic
amplitude should have been 0.045V
(9%), but as the rise/fall time increas-
es, the amplitude of the harmonics
decreases.

If we now look at a much faster bit
rate of 3 GHz (still 0.5Vp-p) with the
same rise/fall times we see that the
5th harmonic has a much smaller rel-
ative importance (Figures 4-6). The
5th harmonic of a 3 GHz clock pat-
tern with 47 ps rise/fall times is only
0.3% of the amplitude of the resulting
signal.

As we can see, the relative impor-
tance of the harmonics depends both
on the bit rate and the edge speeds of
the signal.

Figure 3 GHz clock with 9 ps
(20-80%) rise/fall time; 5th harmon-
ic amplitude = 6.4%.
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Figure 2 - 500 MHz clock with 35 ps
rise/fall time (20-80%); 5th harmon-
ic amplitude = 8.1%.

So far we have looked only at
clock signals. Let’s see what effect
changing the data content of a signal
has on the spectral content of signals.
We took the same signal 0.5Vp-p sig-
nal source at 1 Gb/s, 9 ps edge speed,
and changed the pattern to the fol-
lowing patterns commonly used in
the testing of high speed serial inter-
faces:

1. PCI Express Compliance Pattern
(40 bits long)

2. K28-5 (20 bit long 8b/10b encoded
pattern)

3. PRBS 271 (127 bits long)

in Figures 7-9, the first thing we
notice is that there are no clear har-
monics at multiples of the fundamen-
tal frequency of the signal (bit rate/2).

2H 1 4 VB Hz St s (5@ prs
Figure 5 .- 3 GHz clock with 35 ps
(20-80%) rise/fall time; 5th harmon-
ic amplitude = 1.3%.

Figure 3 - 500 MHz clock with 47 ps
(20-80%) rise/fall time ; 5th harmon-
ic amplitude = 7.4%.

There is plenty of spectral content,
but it is spread out at many different
frequencies. If we look at the ampli-
tude of the content at the 5th har-
monic frequency (in this case 2.5
GHz) we see that even though the
edge speed is very fast (9 ps 20-80%)
the amplitudes are quite small com-
pared to the amplitude of the resul-
tant signal. We also notice that, with
more spectral content, the amplitudes
of each spectral tone are lower. This is
because the energy in the signal is
being distributed among different fre-
quencies. It is clearly not enough to
simply look at the amplitude of the
spectral content at the 5th harmonic
frequency. We must take into account
the energy at all frequencies to decide
how much bandwidth we need in
order to accurately measure a signal.

) kHz VEH 180 kHz

Figure 6 - 3 GHz clock with 47 ps

(20-80%) rise/fall time; 5th harmon-
ic amplitude = 0.3%.
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Figure 7 - PCle Compliance Pattern;
5th harmonic amplitude = 4.8%.

Another way to quantify how much
bandwidth is required to capture the
necessary frequency content of a sig-
nal is to integrate the spectral content
of a signal until we reach a certain
percentage of the total signal power
(say 99.9%). This method ensures that
we include all the spectral content
that is of amplitude large enough to
significantly affect the signal.

The graphs in Figures 10 and 11
compare the amount of bandwidth (in
GHz) required to contain 99.9% of the
signal power of a clock pattern and a
27 -1 PRBS pattern. Both simulated
data and live signal measurements
are compared at many different com-
binations of bit rate and edge speed.
The edge speeds in the simulation
were created using a sum of cosines
filter with linear phase. Measure-
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Figure 8 - K28-5 encoded pattern;
5th harmonic amplitude = 3.0%.

duced with an Agilent N4903A J-
BERT and cascaded Picosecond Pulse
Labs transition time converters mea-
sured with a 26.5 GHz E4440A per-
formance spectrum analyzer.

The rise time is clearly the domi-
nant factor in determining the
amount of bandwidth the signal
requires. Indeed, the data even shows
that in some cases a higher bit rate
requires less bandwidth than a lower
bit rate for a given rise time. Note
that if we analyze the data closely we
see that in most cases the clock pat-
tern requires the most bandwidth for
a given bit rate or rise time.
Intuitively this makes sense, since
the clock is switching states more
often than the data pattern and thus
contains more high frequency energy

In the real world it is not practical
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Figure 9 - PRBS 27 - 1; 5th harmon-
ic amplitude = 0.8%.

band spectrum analyzer before decid-
ing which oscilloscope to wuse.
Although there is no easy way to pre-
dict exactly how much bandwidth is
required for a given data pattern, bit-
rate and rise time, we can use a con-
servative approximation: the band-
width required to capture 99.9% of a
signal’s power is ~0.56/RiseTime. The
choice of 99.9% signal power is arbi-
trary, but it can be shown that for a
flat-response real-time oscilloscope, a
measurement bandwidth equal or
greater to 0.56/RiseTime will deliver
rise/fall time measurement accuracy
of 3% or better.

The Effect of Noise on Timing
Measurements

As we discussed in the introduc-
tion, more measurement bandwidth

ments of the live signal were pro- to measure each signal with a wide- wusually means more instrument
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Bandwidth required for a clock signal at
various combinations of bit rate and edge speed.

Figure 11 . Bandwidth required for a 27 - 1 PRBS pattern
at various combinations of bit rate and edge speed.



Figure 12 .

noise and noise impacts timing mea-
surements.

In Figures 12 and 13 the effect of
additional noise on a signal is illus-
trated. The signal source is the same
in both cases but in Figure 13, noise
has been added to the signal.

An Agilent DSO91304A real-time
oscilloscope is used to measure the
rise time of the signal and its stan-
dard deviation. Although the nominal
rise time does not change much, the
standard deviation and range of the
measurement almost doubles.

The white line shows the nominal
edge speed, the red line shows an
apparent decrease in rise time due to
noise, and the green line shows an
apparent increase in rise time due to
the noise. The slower the edge, the
greater the impact of the noise.

If we assume that the instrument
noise is mainly Gaussian, indepen-
dent of signal amplitude, and the
slew rate of the signal is similar at
both the 20% and 80% locations on
the edge, we can approximate that
the standard deviation of the 20-80%
rise/fall time (op,.) is:

s >\/§*Gn*Tr
o 0.6%A

where o, is the standard deviation of
the instrument noise, 7r is the edge
speed and A is the nominal signal

Digital signal without added noise.

amplitude. The V2 factor comes from
the fact that we are combining the
noise on 2 locations on the edge, and
the 0.6*A from the choice of 20-80%
signal amplitude as our rise time.

For comparison with the band-
width requirement of 3% accuracy, a
3% standard deviation of the rise/fall
time would be created purely by
instrument noise when the instru-
ment noise is:

A
c,=—
" 80

Thus, when measuring a 0.5V p-p
signal for example, instrument rms
noise of 6.25 mV would introduce a
measured rms error in the rise time
of approximately 3%.

The actual variation created by
the instrument noise could be much
higher if the instrument noise is not
constant with signal amplitude.

Many other instrument effects
will combine to produce measured
variation of rise/fall times such as jit-
ter, interleaving errors, etc., so it is
very important to minimize the addi-
tional effect of instrument noise to
avoid using up valuable measure-
ment margin.

Conclusion
We have seen that the 5th har-
monic is a very poor predictor of

Figure 13 - Digital signal with added noise.

required measurement bandwidth.
Instead, rise/fall times can predict
required bandwidth much more accu-
rately through the relationship:

BW = 0.56/RiseTime

We must also remember that it is
not just bandwidth that determines
the quality of a timing measurement.
Instrument noise degrades the accu-
racy of all measurements, and so
there is little benefit to high mea-
surement bandwidth without also
having low noise.

If a signal is repetitive in nature,
then an equivalent time sampling
oscilloscope such as the Agilent
86100C can be used. This allows for
the simultaneous combination of
extremely high bandwidth, low noise
and ultra-low jitter.
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