
Notes on Shannon’s Theorem

Given a discrete memoryless channel (meaning that
each signal symbol is perturbed by noise independently
of the noise effects on all other symbols) with capacity C
bits per second, and an information source with rate R
bits per second where R < C, there exists a code such that
the output of the source can be transmitted over the
channel with arbitrarily small probability of error.

—The definition of Shannon’s theorem, as de-
scribed in [1].

In developing his theorem, Claude Shannon effec-
tively separated the transmitted signal from the

information being carried. Note that it says nothing
about bandwidth or filtering of the signal, or the com-
plexity of the code. And although it says you can estab-
lish near-errorless communications, it says nothing
about the net data rate (throughput) of that communi-
cations after coding is applied.

As described in [2], “What Shannon says here is
that in a noise channel, errorless communication (not
errorless transmission!) can occur as long as two con-
ditions are met: first, that the information rate R is
below a certain value C; and second, that a sufficient-
ly capable code is being used.”

The type of idealized assumption made by Shannon
to create a mathematical basis for his theorem is com-
mon, but there are always practical factors for achiev-
ing system performance that approaches the ideal
limit. This was addressed later, in the well-known
Shannon-Hartley equation:

(1)

where C is the theoretical channel capacity in bits per
second, B is the idealized channel bandwidth in Hz, PS
is the total signal power (in watts) and PN is the total
noise power (in watts) within bandwidth B. The ratio
PS/PN is also called the signal-to-noise radio, or SNR.

The above equation applies real-world factors to
Shannon’s theorem. We now have C defined as a rela-
tionship between bandwidth and SNR. But this modi-
fication of the C from the ideal does not change the
theorem in any way; it only defines the reduction in C
in a practical implementation.

Eq. (1) is often modified by moving B (bandwidth)
to the left-hand side, where C/B has the dimensions of
bps/Hz. Figure 1 shows the rearranged Eq. (1) plotted
on a log-log scale. Below 0 dB SNR, the plot is linear;
above 0 dB SNR, the plot flattens but continues to

increase with increasing SNR.
What this plot shows us is that below 0 dB SNR,

where noise is the dominant factor, the capacity of a
data channel is reduced in proportion to the SNR
(log/log scale). “Below the noise” communications has
been used in many applications over the past 30-40
years, confirming Shannon’s theorem that such com-
munications is possible, but at a reduced net data rate.
These systems now use digital coding, but early sys-
tems used equivalent analog methods such as long
integration times and ultra narrowband filtering.

In the region at least 6 dB above 0 dB SNR, noise
is no longer the limiting factor. In this region, achiev-
ing the maximum channel capacity depends on the
design of the signal—modulation type and coding.
High SNR means that there is little ambiguity in a sig-
nal’s relative amplitude and phase. Modulation types
such as 8 PSK and various levels of QAM contain more
bits per symbol, resulting in higher net data rates.

Before Shannon, only the part of Fig. 1 below 0 dB
SNR was understood. In those early days of radio (and
wireline) communications, all effort for improvement
was directed toward achieving a better SNR—higher
power transmitters, lower noise figure receivers, high-
er gain antennas, interference reduction, etc.
Shannon’s theorem introduced the power of coding,
giving engineers a new tool to use for designing
improved communication systems. His groundbreak-
ing work has had a dramatic, and lasting impact.
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Figure 1  ·  Plot of capacity density versus SNR.
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