DESICN NOTES

L-Network Design Procedure

For maximum power transfer, source and load impedance must have a conjugate match. For many circuits with modest bandwidth requirements, a simple L-network comprising two reactive components is the simplest method of achieving that match. This note is a quick review of L-network design.

Figure 1 shows the sequence of steps for matching two impedances, either of which can be considered "source" or "load." Fig. 1a shows only the resistance of these impedances; their reactances will be dealt with later. Most often, one of the impedances is a common system impedance. For this example, we'll assume that $R_{1}=50 \mathrm{ohms}$, then arbitrarily choose $R_{2}=10$ ohms.

The design process begins with a shunt component ($X p$ in Fig. 1b) connected in parallel with the higher resistance (R_{1}). The parallel combination will result in a lower resistance, which we want to be equal to R_{2} (10 ohms). Because X_{P} is reactive, the resulting lower resistance will now have an associated reactance. This is cancelled by the L-network's series reactance X_{S}, which is the negative of the reactance introduced by X_{P}. Thus, the series and shunt components are of opposite reactances-a shunt inductor and a series capacitor, or vice versa.

The design calculation starts by determining circuit Q according to the ratio of the two resistances:

$$
Q_{S}=Q_{P}=\sqrt{\frac{R_{P}}{R_{S}}-1}
$$

where R_{P} is the resistance adjacent to the parallel leg of the network, and R_{S} is the resistance at the seriesconnected end. Q may not be negative, so R_{P} must be the higher of the two resistances. In our example, $R_{1}=$ R_{P} and $R_{2}=R_{S}$. Note that Q is determined by the source and load, not be user-selected as is typical when designing higher order networks.

The calculation continues as follows:

$$
\begin{aligned}
& Q_{S}=\frac{\left|X_{S}\right|}{R_{S}} \quad \text { or, } \quad\left|X_{S}\right|=Q_{S} R_{S} \\
& Q_{P}=\frac{R_{P}}{\left|X_{P}\right|} \quad \text { or, } \quad\left|X_{P}\right|=\frac{R_{P}}{Q_{P}}
\end{aligned}
$$

where the reactances are given as magnitude only, since X_{S} and X_{P} may be either capacitance or inductance, but as noted above, cannot both be the same.

Applying these equations to our example, we find that $Q=2,\left|X_{S}\right|=20$ ohms and $\left|X_{P}\right|=25$ ohms. Before assigning a sign to each reactance, let's look at

Figure 1 . L-network design sequence.
our example with complex impedances at Z_{1} and Z_{2}, as in the circuit of Fig. 1c. Since we assumed a system impedance, let $Z_{1}=50 \pm j 0 \mathrm{ohms}$ (same as R_{1}). Then let's say that $Z_{2}=10-j 10$ ohms.

In Fig. 1c we see that X_{S} has been split into two parts: X_{2} is the reactive part of Z_{2}, and X_{C} is the final circuit value that makes X_{S} equal to the sum of X_{C} and X_{2}. We have two choices for the signs of the network reactances, and can examine the effect of each for obtaining practical values of X_{C} and X_{P}.

If $X_{S}=+20$ ohms, then X_{C} must be +30 ohms. X_{P} will be -25 ohms.

If $X_{S}=-20$ ohms, then X_{C} must be -10 ohms. X_{P} will be +25 ohms.

One common choice is selecting the configuration to enable or block DC continuity. Let's say that Z_{2} is a transistor output being matched to a 50 ohm transmission line. Since $X_{C}=-10 \mathrm{ohms}$, it is a capacitor and will be useful for blocking DC.

Finally, if Z_{1} is complex, X_{P} would be combined with the reactive portion of Z_{1} to compute the actual circuit component value, as was done to find X_{C}.

