
26 High Frequency Electronics

High Frequency Design

SIMULATION TOOLS

RTDX®-Based Simulation
Tools Support Development
of Software-Defined Radio

By Robert G. Davenport
MC2 Technology Group, LLC

Recognized simula-
tion software man-
ufacturers, includ-

ing Mathworks, National
Instruments and Eagle-
ware-Elanix Inc., have
developed an interface
between their tools and
Texas Instruments’ (TI)

digital signal processors (DSP) using TI’s
JTAG-based RTDX® interface. Since RTDX is
common to the TI C5000, C6000 and OMAP
DSP families, a single tool can be used to
develop software on all of these popular
devices. This article presents an example of
the use of these tools in the development and
verification of DSP algorithms for a Software
Defined Radio (SDR).

The SDR discussed in this paper is part of
an existing communications radio capable of
AM and FM voice and data communication.
The algorithms execute on a TI TMS320C5510
DSP. An RTDX interface between SystemView
by Elanix® and the target DSP was used to
both validate and improve the performance of
the existing algorithms. The examples illus-
trated in this presentation are an FM voice
receiver and its IF AGC algorithm.

An FM Software Defined Receiver
The FM voice receiver diagram is shown in

Figure 1. The receiver IF input is a 30 kHz IF
signal digitized at 120 ksps. The digitized sig-
nal first passes through a software AGC algo-
rithm that computes the received signal
strength and generates a gain control word.
The control word derives an analog voltage
that is applied to the radio’s variable gain IF
amplifier.

This article describes how
linked software simulation

tools can be used in the
design and verification of a
software-defined radio that
uses popular digital signal

processing devices

Figure 1 · FM receiver block diagram.

From April 2005 High Frequency Electronics
Copyright © 2005 Summit Technical Media

28 High Frequency Electronics

High Frequency Design

SIMULATION TOOLS

Sampling the 30 kHz input signal at 120 ksps results
in four samples per cycle of the input waveform. This
allows the signal to be separated into in-phase and
quadrature (I & Q) components by treating the even num-
ber samples as real (I) and the odd numbered samples
(with appropriate sign change) as imaginary (Q). Because
the samples are separated in this way, the I-Q conversion
block yields two data streams each sampled at 60 ksps.
This effectively decimates the sample rate by two.

The complex data streams are then filtered by a half-
band decimation filter that further reduces the output
sample rate to 30 ksps. The 30 ksps streams then pass
through a programmable FIR filter that establishes the
desired IF bandwidth.

Next, the data streams are passed through an FIR
rate matching filter that ultimately reduces the sample
rate from 30 ksps to 24 ksps. The 24 ksps I-Q streams are
applied to a quadrature FM discriminator, producing a
single data stream consisting of the demodulated voice
sampled at 24 ksps. The demodulated FM output is fur-
ther filtered by a programmable FIR decimating base-
band filter that decimates the 24 ksps sampled audio to
the final 8 ksps sample rate. The 8 ksps sampled audio is
passed through a final host-adjustable gain stage before
being passed to a host processor for additional audio pro-
cessing.

SystemView Simulation
The SystemView simulation of the FM receiver is

shown in Figure 3. SystemView provides a rich library of

user-configurable source, sink and functional
blocks. The blocks can be easily interconnect-
ed into the desired block diagram by drop-
ping the desired block on the GUI develop-
ment screen and wiring them together.
Double-clicking the block opens up a user
screen that allows the user to configure the
block as required. Sample rates, block sizes
and iteration controls are accessed via GUI
pop-up menus on the SystemView tool-bar.
The input and output results can be dis-
played in real-time on the GUI as shown in
Figure 3, or each result can be graphically
analyzed in detail as shown in Figure 4.

Referring to Figure 3, the simulation
begins by generating a 1 kHz sine wave input
signal using a Sinusoid Source block. The
output of the sine wave source is connected to
a graphical display sink that displays the
output on the GUI in real-time. The sine
wave also drives an FM modulator block that
is configured for a center frequency of 30 kHz
and a peak frequency deviation of 4 kHz. The
system sample clock is set to 120 kHz, so that

the FM output signal consists of the four samples per
cycle required to perform I-Q conversion in the DSP.

The output of the FM modulator block is summed with
a Gaussian noise source block that is used to simulate the
receiving system noise figure. Note that the blocks
described thus far execute in double-precision floating
point, allowing a high degree of accuracy for analog sim-
ulation. (The SystemView Communication Library pro-
vides several additional channel model blocks that can be
used to simulate a variety of RF environmental condi-
tions.)

The FM signal with additive noise is converted to a 16-
bit binary word by the DSP Converter block, which simu-
lates the digitization of the received signal. In this simu-
lation, the outputs of the FM modulator and the noise
token are set to equal the desired magnitude of the bina-
ry input word.

The digital signal is then input to a token that pro-
vides an RTDX interface between SystemView and the
TMS320C5510 processor. The interface requires the
development of a C wrapper interface, examples of which
are provided with SystemView. Once the wrapper is
developed, it is connected to the SystemView simulation
by double clicking on the RTDA (Real-Time Data
Architect) token. This brings up the pop-up window
shown in Figure 2. The pop-up window is used to identify
the path to the TMS320C5510 executable output file to be
accessed by SystemView. The pop-up is also used to set
the number of input and output channels as well as the
buffer sizes and data precision. In this particular simula-

Figure 2 · RTDA token pop-up window.

30 High Frequency Electronics

High Frequency Design

SIMULATION TOOLS

tion, there is one RTDX input channel and two RTDX out-
put channels. The input channel is set to transfer a block
size of 120 samples, corresponding to one millisecond of
input data. The output channels selected for display are
the output of the FM demodulator and the audio output
received after the final stage of filtering and decimation.

Referring again to the receiver block diagram in
Figure 1, the output of the demodulator is sampled at a 24
ksps rate, while the output of the decimating audio filter
is 8 ksps. Therefore the two RTDX output channel buffers
are set to 24 and 8 words respectively, since those are the
number of output samples that will be produced when
120 input samples are processed by the receiver algo-
rithm. The total number of samples to be processed dur-
ing a run of the simulation is set by the SystemView clock
control. The simulation can be set to run for a specific
number of samples, or a single block of samples can be
run in successive loops. In this particular system, the
sample size was set to 120 samples, and the program was
allowed to run for 16 successive loops. (This is a particu-
larly useful technique, because SystemView allows vari-
ous token parameters to be varied during each successive
loop. For example, it may be of interest to increment the
deviation of the Gaussian noise token for each iteration of
the simulation.)

Once the RTDA token has been properly configured,
the simulation can be run. When SystemView starts, the
TI development environment, Code Composer Studio, is
started and the executable program loaded. The simula-
tion then executes on the DSP until the total number of

samples have been processed. During this time, the input
and output values are displayed on the GUI as shown in
Figure 3. Note the burst of noise on the FM Demod
Output shown in Figure 3. When the existing program
was initially simulated, this was found to be the result of
uninitialized memory. The error was corrected but repro-
duced for this article in order to demonstrate the program
debugging capability of graphically representing the
results of the algorithm. In order to debug a problem such
as this, it is only necessary to preload the DSP project and
output file in Code Composer Studio before running the
simulation. It is then possible to set break-points in the
program source code and interactively debug the program
(step through, display breakpoints and memory, etc.)
while running the simulation. Note also that the begin-

Figure 3 · SystemView FM radio block diagram.

Figure 4 · Expanded display of 8 ksps decimated
audio.

32 High Frequency Electronics

High Frequency Design

SIMULATION TOOLS

nings of the output waveforms are delayed relative to the
input signal. This is because the first 120 samples must
be loaded into the algorithm and processed before valid
output results are available.

When the simulation is complete, it is also possible to
graphically analyze the output results in greater detail
using the graphical analysis tools available with
SystemView. For example, the 1 kHz demodulated output
has been expanded in Figure 4 and the sample points
highlighted with circles to indicate the existence of exact-
ly eight samples per cycle of the 1 kHz demodulated out-
put sine wave.

IF AGC Algorithm
The second algorithm described in this article is a sim-

ulation of the IF AGC algorithm that is used with the FM
receiver. The SystemView block diagram of the AGC is
shown in Figure 5.

This particular AGC algorithm is used to control the
gain of an external analog IF amplifier, which requires a
logarithmic RSSI (Received Signal Strength Indication)
voltage as an input. Therefore, the algorithm computes
the average power of the received signal in dB and pro-
vides the output result as a control word that can be con-
verted to a logarithmic voltage by a digital to analog con-
verter.

This is simulated in SystemView by passing an input
signal (in this case a 30 kHz sine wave sampled at 120

ksps) through a SystemView multiplier block (Analog
Gain Element) that multiplies the input by the AGC con-
trol voltage in order to compensate for increases in gain.
The gain compensated input signal is in double-precision
floating point, so it is converted to a 16-bit integer format
before being transferred to the DSP algorithm via the
RTDX channel. Unlike the FM receiver algorithm, which
processed 120 samples in each input data block, the AGC
algorithm updates by processing every eight samples cor-
responding to an update rate of 120/8 = 15 AGC updates
per 120 sample blocks. Therefore the RTDA token’s input
block size is set to eight, while the output block size is set
to one, since only one RSSI output value is obtained for
each block of eight input samples.

The logarithmic output value is represented as a
fixed-point 16-bit word which is converted back to a dou-
ble precision floating point word by the “int16 to float”
conversion block shown in the block diagram. In order to
simulate the action of the analog variable gain amplifier,
the converted logarithmic output value is scaled by an
amplifier token (block 14 in Figure 5), offset by a DC gain
target (block 42) and inverted by a unity gain inverting
buffer amplifier (block 38). The antilog of the scaled
inverted signal is computed by raising 10 to the input
exponent x, by means of block 39 in Figure 5. The con-
verted voltage produced by block 39 is applied to the
input of the Analog Gain Element multiplier block, thus
closing the AGC feedback loop.

Figure 5 · IF AGC simulation block diagram.

The intent of this particular simulation however, was
to measure and “tweak” the attack and decay times of the
AGC. In order to accomplish this, the 30 kHz sine wave
was input at a relatively high level and “keyed” on for 10
msec once during the simulation in order to observe the
attack and decay times. The keying is accomplished by
setting a pulse generator block (block 49) to a pulse width
of 10 msec, with a repetition interval greater than or
equal to the period of the simulation. The output of block
49 multiplies the output of the sine wave generator block
which keys the signal during the 10 msec pulse width
since the output voltage of the pulse is set to one volt
when high and 0 volts when low.

The effects of the algorithm’s attack and decay time
settings are clearly seen in the AGC Control output volt-
age as well as the AGC Out signal display, which plots the
input to the AGC Algorithm following the gain element
block.

Conclusion
We have presented a method for both developing and

validating Software Defined Radio algorithms that are
implemented on the Texas Instruments family of Digital
Signal Processors. This has been a relatively simple
example to illustrate the technique. Ultimately, both the
SDR transmitter and receiver algorithms can be simulat-
ed this way. Both algorithms are connected together with
channel models blocks that allow simulation of the RF
environment. This permits analysis of the system perfor-
mance, especially the effect of error correction algorithms,
such as convolutional and Reed Solomon encoding.

Since TI’s Code Composer Studio supplies the inter-
face between the simulator environment and the DSP, it
is possible to use the debugging capability of Code
Composer to develop and evaluate the SDR algorithm.
With the advent of Code Composer Studio release 2.0, it

is also possible to simulate the algorithm on a variety of
DSP simulators that are provided with Code Composer as
well as the actual target DSP. Finally, the RTDX channel
transfers data to and from the JTAG emulator interface
during the idle time of the DSP CPU. Therefore, it is also
possible to accurately measure the execution time of the
algorithm, since the transfer of data via the RTDX chan-
nel does not add significant overhead to the DSP algo-
rithm being considered.

The advantage of a drag and drop block diagram
approach offered by SystemView or (more recently)
Matlab’s Simulink, provides the ability to quickly vary
inputs to the algorithm as well as model external compo-
nents of the SDR system such as RF and analog compo-
nents as well as the RF environment of the channel itself.

Finally, both SystemView and Matlab offer the capa-
bility of developing bit-true DSP algorithms from the
block diagrams developed in their respective simulation
environments. Once completed, these algorithms can be
converted to optimized C code that can be compiled and
executed on Texas Instruments DSPs. Thus it is possible
to significantly reduce the SDR algorithm development
time while automatically providing a benchmark simula-
tion by which the performance of the DSP algorithm can
be compared.

Author’s Note
Since the preparation of this article, the simulation

has been expanded to include a complete model of the
analog receiver using SystemView’s RF and
Communication token library. This model simulates the
frequency plan, power budget, noise figure and 3rd order
spurious response.

Readers that are interested in further details may
contact the author: Robert G. Davenport, MC2 Technology
Group, LLC, e-mail: rgdavenport@rochester.rr.com.

